×

Flow in temporally and spatially varying porous media: a model for transport of interstitial fluid in the brain. (English) Zbl 07839908

Summary: Flow in a porous medium can be driven by the deformations of the boundaries of the porous domain. Such boundary deformations locally change the volume fraction accessible by the fluid, creating non-uniform porosity and permeability throughout the medium. In this work, we construct a deformation-driven porous medium transport model with spatially and temporally varying porosity and permeability that are dependent on the boundary deformations imposed on the medium. We use this model to study the transport of interstitial fluid along the basement membranes in the arterial walls of the brain. The basement membrane is modeled as a deforming annular porous channel with the compressible pore space filled with an incompressible, Newtonian fluid. The role of a forward propagating peristaltic heart pulse wave and a reverse smooth muscle contraction wave on the flow within the basement membranes is investigated. Our results identify combinations of wave amplitudes that can induce either forward or reverse transport along these transport pathways in the brain. The magnitude and direction of fluid transport predicted by our model can help in understanding the clearance of fluids and solutes along the Intramural Periarterial Drainage route and the pathology of cerebral amyloid angiopathy.

MSC:

76Z05 Physiological flows
76S05 Flows in porous media; filtration; seepage
76D99 Incompressible viscous fluids
76M12 Finite volume methods applied to problems in fluid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
92C35 Physiological flow
Full Text: DOI

References:

[1] Aldea, R.; Weller, RO; Wilcock, DM; Carare, RO; Richardson, G., Cerebrovascular smooth muscle cells as the drivers of intramural periarterial drainage of the brain, Front Aging Neurosci, 11, 1, 2019 · doi:10.3389/fnagi.2019.00001
[2] Asgari, M.; De Zélicourt, D.; Kurtcuoglu, V., Glymphatic solute transport does not require bulk flow, Sci Rep, 6, 1, 38635, 2016 · doi:10.1038/srep38635
[3] Bedussi, B.; Almasian, M.; de Vos, J.; VanBavel, E.; Bakker, EN, Paravascular spaces at the brain surface: low resistance pathways for cerebrospinal fluid flow, J Cereb Blood Flow Metab, 38, 4, 719-726, 2018 · doi:10.1177/0271678X18758266
[4] Bevan, JA; Dodge, J.; Walters, CL; Wellman, T.; Bevan, RD, As human pial arteries (internal diameter 200-1000 μm) get smaller, their wall thickness and capacity to develop tension relative to their diameter increase, Life Sci, 65, 11, 1153-1161, 1999 · doi:10.1016/S0024-3205(99)00349-5
[5] Bilston, LE; Fletcher, DF; Brodbelt, AR; Stoodley, MA, Arterial pulsation-driven cerebrospinal fluid flow in the perivascular space: a computational model, Comput Methods Biomech Biomed Eng, 6, 4, 235-241, 2003 · doi:10.1080/10255840310001606116
[6] Carare, RO; Bernardes-Silva, M.; Newman, TA; Page, AM; Nicoll, JAR; Perry, VH; Weller, RO, Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology, Neuropathol Appl Neurobiol, 34, 2, 131-144, 2008 · doi:10.1111/j.1365-2990.2007.00926.x
[7] Carr, JB; Thomas, JH; Liu, J.; Shang, JK, Peristaltic pumping in thin non-axisymmetric annular tubes, J Fluid Mech, 917, A10, 2021 · Zbl 1485.76090 · doi:10.1017/jfm.2021.277
[8] Coenen, W.; Zhang, X.; Sánchez, AL, Lubrication analysis of peristaltic motion in non-axisymmetric annular tubes, J Fluid Mech, 921, R2, 2021 · Zbl 1502.76136 · doi:10.1017/jfm.2021.525
[9] Coloma, M.; Schaffer, JD; Carare, RO; Chiarot, PR; Huang, P., Pulsations with reflected boundary waves: a hydrodynamic reverse transport mechanism for perivascular drainage in the brain, J Math Biol, 73, 469-490, 2016 · Zbl 1415.92069 · doi:10.1007/s00285-015-0960-6
[10] Coloma, M.; Schaffer, JD; Huang, P.; Chiarot, PR, Boundary waves in a microfluidic device as a model for intramural periarterial drainage, Biomicrofluidics, 13, 2, 2019 · doi:10.1063/1.5080446
[11] Costa, A., Permeability-porosity relationship: a reexamination of the Kozeny-Carman equation based on a fractal pore-space geometry assumption, Geophys Res Lett, 2006 · doi:10.1029/2005GL025134
[12] Cowin, SC, Bone poroelasticity, J Biomech, 32, 3, 217-238, 1999 · doi:10.1016/S0021-9290(98)00161-4
[13] Daversin-Catty, C.; Gjerde, IG; Rognes, ME, Geometrically reduced modelling of pulsatile flow in perivascular networks, Front Phys, 2022 · doi:10.3389/fphy.2022.882260
[14] Diem, AK; MacGregor Sharp, M.; Gatherer, M.; Bressloff, NW; Carare, RO; Richardson, G., Arterial pulsations cannot drive intramural periarterial drainage: significance for A β drainage, Front Neurosci, 11, 475, 2017 · doi:10.3389/fnins.2017.00475
[15] Diem, AK; Carare, RO; Weller, RO; Bressloff, NW, A control mechanism for intra-mural peri-arterial drainage via astrocytes: How neuronal activity could improve waste clearance from the brain, PLoS ONE, 13, 10, 2018 · doi:10.1371/journal.pone.0205276
[16] Duling, BR; Berne, RM, Propagated vasodilation in the microcirculation of the hamster cheek pouch, Circ Res, 26, 2, 163-170, 1970 · doi:10.1161/01.RES.26.2.163
[17] Faghih, MM; Sharp, MK, Is bulk flow plausible in perivascular, paravascular and paravenous channels?, Fluids Barriers CNS, 15, 1, 1-10, 2018 · doi:10.1186/s12987-018-0103-8
[18] Fu, X.; Huang, C.; Wong, KS; Chen, X.; Gao, Q., A new method for cerebral arterial stiffness by measuring pulse wave velocity using transcranial Doppler, J Atheroscler Thromb, 23, 8, 1004-1010, 2016 · doi:10.5551/jat.33555
[19] Harteveld, AA; Denswil, NP; Van Hecke, W.; Kuijf, HJ; Vink, A.; Spliet, WG; van der Kolk, AG, Ex vivo vessel wall thickness measurements of the human circle of Willis using 7T MRI, Atherosclerosis, 273, 106-114, 2018 · doi:10.1016/j.atherosclerosis.2018.04.023
[20] Holstein-Rønsbo, S.; Gan, Y.; Giannetto, MJ; Rasmussen, MK; Sigurdsson, B.; Beinlich, FRM; Nedergaard, M., Glymphatic influx and clearance are accelerated by neurovascular coupling, Nature Neurosci, 2023 · doi:10.1038/s41593-023-01327-2
[21] Hommel, J.; Coltman, E.; Class, H., Porosity-permeability relations for evolving pore space: a review with a focus on (bio-) geochemically altered porous media, Transp Porous Media, 124, 2, 589-629, 2018 · doi:10.1007/s11242-018-1086-2
[22] Idowu, OE; Shokunbi, MT; Malomo, AO; Ogunbiyi, JO, Size, course, distribution and anomalies of the middle cerebral artery in adult Nigerians, East Afr Med J, 79, 4, 217-220, 2002 · doi:10.4314/eamj.v79i4.8883
[23] Iliff, JJ; Wang, M.; Liao, Y.; Plogg, BA; Peng, W., A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β, Sci Transl Med, 4, 147, 147ra111-147ra111, 2012 · doi:10.1126/scitranslmed.3003748
[24] Kaasschieter, EF; Frijns, AJH, Squeezing a sponge: a three-dimensional solution in poroelasticity, Comput Geosci, 7, 49-59, 2003 · Zbl 1064.76107 · doi:10.1023/A:1022423528367
[25] Kedarasetti, RT; Drew, PJ; Costanzo, F., Arterial pulsations drive oscillatory flow of CSF but not directional pumping, Sci Rep, 10, 1, 10102, 2020 · doi:10.1038/s41598-020-66887-w
[26] Keith Sharp, M.; Carare, RO; Martin, BA, Dispersion in porous media in oscillatory flow between flat plates: applications to intrathecal, periarterial and paraarterial solute transport in the central nervous system, Fluids Barriers CNS, 16, 1, 1-17, 2019 · doi:10.1186/s12987-019-0132-y
[27] Lehmenkühler, A.; Syková, E.; Svoboda, J.; Zilles, K.; Nicholson, Ch, Extracellular space parameters in the rat neocortex and subcortical white matter during postnatal development determined by diffusion analysis, Neuroscience, 55, 2, 339-351, 1993 · doi:10.1016/0306-4522(93)90503-8
[28] Mestre, H.; Tithof, J.; Du, T.; Song, W.; Peng, W.; Sweeney, AM, Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension, Nat Commun, 9, 1, 4878, 2018 · doi:10.1038/s41467-018-07318-3
[29] Morris, AW; Carare, RO; Schreiber, S.; Hawkes, CA, The cerebrovascular basement membrane: role in the clearance of β-amyloid and cerebral amyloid angiopathy, Front Aging Neurosci, 6, 251, 2014 · doi:10.3389/fnagi.2014.00251
[30] Morris, AW; Sharp, MM; Albargothy, NJ, Vascular basement membranes as pathways for the passage of fluid into and out of the brain, Acta Neuropathol, 131, 725-736, 2016 · doi:10.1007/s00401-016-1555-z
[31] Nichols, WW, Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms, Am J Hypertens, 18, S1, 3S-10S, 2005 · doi:10.1016/j.amjhyper.2004.10.009
[32] Rayshubskiy, A.; Wojtasiewicz, TJ; Mikell, CB; Bouchard, MB; Timerman, D.; Youngerman, BE, Direct, intraoperative observation of  0.1 Hz hemodynamic oscillations in awake human cortex: implications for fMRI, Neuroimage, 87, 323-331, 2014 · doi:10.1016/j.neuroimage.2013.10.044
[33] Schley, D.; Carare-Nnadi, R.; Please, CP; Perry, VH; Weller, RO, Mechanisms to explain the reverse perivascular transport of solutes out of the brain, J Theor Biol, 238, 4, 962-974, 2006 · Zbl 1445.92061 · doi:10.1016/j.jtbi.2005.07.005
[34] Sharp, MK; Diem, AK; Weller, RO; Carare, RO, Peristalsis with oscillating flow resistance: a mechanism for periarterial clearance of amyloid beta from the brain, Ann Biomed Eng, 44, 1553-1565, 2016 · doi:10.1007/s10439-015-1457-6
[35] Shiraishi, T.; Sakaki, S.; Uehara, Y., Architecture of the medial smooth muscle of the arterial vessels in the normal human brain: a scanning electron-microscopic study, Scan Microsc, 4, 1, 191-199, 1990
[36] Stefanovska, A., Coupled oscillatros: complex but not complicated cardiovascular and brain interactions, IEEE Eng Med Biol Mag, 26, 6, 25-29, 2007 · doi:10.1109/EMB.2007.907088
[37] Szydłowski, M., Representation of a built-up area in the numerical simulation of urban flash flooding, Arch Hydro-Eng Environ Mech, 54, 285-298, 2007
[38] Tanzi, RE; Moir, RD; Wagner, SL, Clearance of Alzheimer’s Aβ peptide: the many roads to perdition, Neuron, 43, 5, 605-608, 2004 · doi:10.1016/j.neuron.2004.08.024
[39] Troyetsky, DE; Tithof, J.; Thomas, JH; Kelley, DH, Dispersion as a waste-clearance mechanism in flow through penetrating perivascular spaces in the brain, Sci Rep, 11, 1, 4595, 2021 · doi:10.1038/s41598-021-83951-1
[40] Tümer, N.; Toklu, HZ; Muller-Delp, JM; Oktay, Ş.; Ghosh, P.; Strang, K., The effects of aging on the functional and structural properties of the rat basilar artery, Physiol Rep, 2, 6, e12031, 2014 · doi:10.14814/phy2.12031
[41] Ushiwata, I.; Ushiki, T., Cytoarchitecture of the smooth muscles and pericytes of rat cerebral blood vessels: a scanning electron microscopic study, J Neurosurg, 73, 1, 82-90, 1990 · doi:10.3171/jns.1990.73.1.0082
[42] van Veluw, SJ; Hou, SS; Calvo-Rodriguez, M.; Arbel-Ornath, M.; Snyder, AC; Frosch, MP, Vasomotion as a driving force for paravascular clearance in the awake mouse brain, Neuron, 105, 3, 549-561, 2020 · doi:10.1016/j.neuron.2019.10.033
[43] Vinje, V.; Bakker, EN; Rognes, ME, Brain solute transport is more rapid in periarterial than perivenous spaces, Sci Rep, 11, 1, 1-11, 2021 · doi:10.1038/s41598-021-95306-x
[44] Wan, J.; Zhou, S.; Mea, HJ; Guo, Y.; Ku, H.; Urbina, BM, Emerging roles of microfluidics in brain research: from cerebral fluids manipulation to brain-on-a-chip and neuroelectronic devices engineering, Chem Rev, 122, 7, 7142-7181, 2022 · doi:10.1021/acs.chemrev.1c00480
[45] Wang, P.; Olbricht, WL, Fluid mechanics in the perivascular space, J Theor Biol, 274, 1, 52-57, 2011 · Zbl 1331.92040 · doi:10.1016/j.jtbi.2011.01.014
[46] Wei, HH; Waters, SL; Liu, SQ; Grotberg, JB, Flow in a wavy-walled channel lined with a poroelastic layer, J Fluid Mech, 492, 23-45, 2003 · Zbl 1063.76689 · doi:10.1017/S0022112003005378
[47] Weller, RO; Preston, SD; Subash, M.; Carare, RO, Cerebral amyloid angiopathy in the aetiology and immunotherapy of Alzheimer disease, Alzheimer’s Res Ther, 1, 2, 1-13, 2009 · doi:10.1186/alzrt6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.