×

The open XXX spin chain in the SoV framework: scalar product of separate states. (English) Zbl 1373.82020

The authors consider the XXX open spin-1/2 chain with the most general non-diagonal boundary terms, that they are solving by means of the quantum separation of variables approach. The scalar products of separate states are computed, a class of states which notably contains all the eigenstates of the model. It is shown that the scalar products of two generic separate states can be written as the determinant of a matrix which has a natural homogeneous limit.

MSC:

82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
82B23 Exactly solvable models; Bethe ansatz

References:

[1] Alcaraz F C, Barber M N, Batchelor M T, Baxter R J and Quispel G R W 1987 Surface exponents of the quantum XXZ, Ashkin-Teller and Potts models J. Phys. A: Math. Gen.20 6397-409 · doi:10.1088/0305-4470/20/18/038
[2] Sklyanin E K 1988 Boundary conditions for integrable quantum systems J. Phys. A: Math. Gen.21 2375-89 · Zbl 0685.58058 · doi:10.1088/0305-4470/21/10/015
[3] Ghoshal S and Zamolodchikov A 1994 Boundary S-matrix and boundary state in two-dimensional integrable quantum field theory Int. J. Mod. Phys. A 9 3841 · Zbl 0985.81714 · doi:10.1142/S0217751X94001552
[4] Jimbo M, Kedem R, Kojima T, Konno H and Miwa T 1995 XXZ chain with a boundary Nucl. Phys. B 441 437-70 · Zbl 0990.82515 · doi:10.1016/0550-3213(95)00062-W
[5] Nepomechie R I 2002 Solving the open XXZ spin chain with nondiagonal boundary terms at roots of unity Nucl. Phys. B 622 615-32 · Zbl 1049.82010 · doi:10.1016/S0550-3213(01)00585-5
[6] Nepomechie R I 2004 Bethe ansatz solution of the open XXZ chain with nondiagonal boundary terms J. Phys. A: Math. Gen.37 433-40 · Zbl 1050.82011 · doi:10.1088/0305-4470/37/2/012
[7] Cao J, Lin H-Q, Shi K-J and Wang Y 2003 Exact solution of XXZ spin chain with unparallel boundary fields Nucl. Phys. B 663 487-519 · Zbl 1023.82502 · doi:10.1016/S0550-3213(03)00372-9
[8] Yang W-L and Zhang Y-Z 2007 On the second reference state and complete eigenstates of the open XXZ chain J. High Energy Phys.JHEP07(2007) 044 · doi:10.1088/1126-6708/2007/04/044
[9] Baseilhac P 2006 The q-deformed analogue of the Onsager algebra: beyond the Bethe ansatz approach Nucl. Phys. B 754 309-28 · Zbl 1215.82015 · doi:10.1016/j.nuclphysb.2006.08.008
[10] Baseilhac P and Koizumi K 2007 Exact spectrum of the XXZ open spin chain from the q-Onsager algebra representation theory J. Stat. Mech. P09006 · Zbl 1456.82029 · doi:10.1088/1742-5468/2007/09/P09006
[11] Kitanine N, Kozlowski K K, Maillet J M, Niccoli G, Slavnov N A and Terras V 2007 Correlation functions of the open XXZ chain: I J. Stat. Mech. P10009 · Zbl 1456.82143 · doi:10.1088/1742-5468/2007/10/P10009
[12] Kitanine N, Kozlowski K K, Maillet J M, Niccoli G, Slavnov N A and Terras V 2008 Correlation functions of the open XXZ chain: II J. Stat. Mech. P07010 · Zbl 1456.82143 · doi:10.1088/1742-5468/2008/07/P07010
[13] Crampé N, Ragoucy E and Simon D 2010 Eigenvectors of open XXZ and ASEP models for a class of non-diagonal boundary conditions J. Stat. Mech. P11038 · doi:10.1088/1742-5468/2010/11/P11038
[14] Crampé N, Ragoucy E and Simon D 2011 Matrix coordinate Bethe Ansatz: applications to XXZ and ASEP models J. Phys. A: Math. Theor.44 405003 · Zbl 1226.82008 · doi:10.1088/1751-8113/44/40/405003
[15] Frahm H, Seel A and Wirth T 2008 Separation of variables in the open XXX chain Nucl. Phys. B 802 351-67 · Zbl 1190.82009 · doi:10.1016/j.nuclphysb.2008.04.008
[16] Frahm H, Grelik J H, Seel A and Wirth T 2011 Functional Bethe ansatz methods for the open XXX chain J. Phys A: Math. Theor.44 015001 · Zbl 1207.82010 · doi:10.1088/1751-8113/44/1/015001
[17] Cao J, Yang W-L, Shi K and Wang Y 2013 Off-diagonal Bethe ansatz solutions of the anisotropic spin-1/2 chains with arbitrary boundary fields Nucl. Phys. B 877 152-75 · Zbl 1284.82017 · doi:10.1016/j.nuclphysb.2013.10.001
[18] Nepomechie R I 2013 An inhomogeneous T-Q equation for the open XXX chain with general boundary terms: completeness and arbitrary spin J. Phys. A: Math. Theor.46 442002 · Zbl 1278.82013 · doi:10.1088/1751-8113/46/44/442002
[19] Niccoli G 2013 Antiperiodic spin-1/2 XXZ quantum chains by separation of variables: complete spectrum and form factors Nucl. Phys. B 870 397-420 · Zbl 1262.82011 · doi:10.1016/j.nuclphysb.2013.01.017
[20] Faldella S, Kitanine N and Niccoli G 2014 Complete spectrum and scalar products for the open spin-1/2 XXZ quantum chains with non-diagonal boundary terms J. Stat. Mech. P01011 · Zbl 1456.82044 · doi:10.1088/1742-5468/2014/01/P01011
[21] Kitanine N, Maillet J M and Niccoli G 2014 Open spin chains with generic integrable boundaries: Baxter equation and Bethe ansatz completeness from separation of variables J. Stat. Mech. P05015 · Zbl 1456.82057 · doi:10.1088/1742-5468/2014/05/P05015
[22] Belliard S and Crampé N 2013 Heisenberg XXX model with general boundaries: eigenvectors from algebraic Bethe ansatz SIGMA9 072 · Zbl 1288.82020 · doi:10.3842/SIGMA.2013.072
[23] Belliard S 2015 Modified algebraic Bethe ansatz for XXZ chain on the segment—I—Triangular cases Nucl. Phys. B 892 1-20 · Zbl 1328.82017 · doi:10.1016/j.nuclphysb.2015.01.003
[24] Belliard S and Pimenta R A 2015 Modified algebraic Bethe ansatz for XXZ chain on the segment—II—general cases Nucl. Phys. B 894 527-52 · Zbl 1328.82009 · doi:10.1016/j.nuclphysb.2015.03.016
[25] Avan J, Belliard S, Grosjean N and Pimenta R A 2015 Modified algebraic Bethe ansatz for XXZ chain on the segment—III—proof Nucl. Phys. B 899 229-46 · Zbl 1331.82011 · doi:10.1016/j.nuclphysb.2015.08.006
[26] Belliard S and Pimenta R A 2016 Slavnov and Gaudin-Korepin formulas for models without U(1) symmetry: the XXX chain on the segment J. Phys A: Math. Theor.49 17LT01 · Zbl 1342.82019 · doi:10.1088/1751-8113/49/17/17LT01
[27] Prosen T 2011 Open XXZ spin chain: nonequilibrium steady state and a strict bound on ballistic transport Phys. Rev. Lett.106 217206 · doi:10.1103/PhysRevLett.106.217206
[28] de Gier J and Essler F H L 2005 Bethe ansatz solution of the asymmetric exclusion process with open boundaries Phys. Rev. Lett.95 240601 · doi:10.1103/PhysRevLett.95.240601
[29] Cherednik I V 1984 Factorizing particles on a half line and root systems Theor. Math. Phys.61 977-83 · Zbl 0575.22021 · doi:10.1007/BF01038545
[30] Faddeev L D, Sklyanin E K and Takhtajan L A 1979 Quantum inverse problem method I Theor. Math. Phys.40 688-706 Translated · Zbl 1138.37331 · doi:10.1007/BF01018718
[31] Faddeev L D, Sklyanin E K and Takhtajan L A 1979 Teor. Mat. Fiz.40 194-220 · Zbl 1138.37331
[32] de Vega H J and González Ruiz A 1993 Boundary K-matrices for the six vertex and the n(2n − 1) An−1 vertex models J. Phys. A : Math. Gen.26 L519-L524 · Zbl 0786.58020 · doi:10.1088/0305-4470/26/12/007
[33] Belliard S, Crampé N and Ragoucy E 2013 Algebraic Bethe ansatz for open XXX model with triangular boundary matrices Lett. Math. Phys.103 493-506 · Zbl 1280.82003 · doi:10.1007/s11005-012-0601-6
[34] Kulish P P, Reshetikhin N Y and Sklyanin E K 1981 Yang-Baxter equation and representation theory I Lett. Math. Phys.5 393-403 · Zbl 0502.35074 · doi:10.1007/BF02285311
[35] Baxter R J 1982 Exactly solved models in statistical mechanics (London: Academic) · Zbl 0538.60093
[36] Baxter R J 1973 Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain I, II, III Ann. Phys.76 1-24, 25-47, 48-71 · Zbl 1092.82512
[37] Takhtadzhan L A and Faddeev L D 1979 The quantum method of the inverse problem and the Heisenberg XYZ model Russ. Math. Surv.34 11-68 · Zbl 0449.35096 · doi:10.1070/RM1979v034n05ABEH003909
[38] Niccoli G 2012 Non-diagonal open spin-1/2 XXZ quantum chains by separation of variables: complete spectrum and matrix elements of some quasi-local operators J. Stat. Mech. P10025 · Zbl 1456.81247 · doi:10.1088/1742-5468/2012/10/P10025
[39] Faldella S and Niccoli G 2014 SOV approach for integrable quantum models associated with general representations on spin-1/2 chains of the 8-vertex reflection algebra J. Phys. A: Math. Theor.47 115202 · Zbl 1288.82010 · doi:10.1088/1751-8113/47/11/115202
[40] Sklyanin E K 1985 The quantum Toda chain Lect. Notes Phys.226 196-233 · Zbl 0601.58039 · doi:10.1007/3-540-15213-X_80
[41] Niccoli G and Teschner J 2010 The Sine-Gordon model revisited I J. Stat. Mech. P09014 · Zbl 1456.81248 · doi:10.1088/1742-5468/2010/09/P09014
[42] Niccoli G 2010 Reconstruction of Baxter Q-operator from Sklyanin SOV for cyclic representations of integrable quantum models Nucl. Phys. B 835 263-83 · Zbl 1204.81090 · doi:10.1016/j.nuclphysb.2010.03.009
[43] Niccoli G 2011 Completeness of Bethe Ansatz by Sklyanin SOV for cyclic representations of integrable quantum models J. High Energy Phys.JHEP03(2011) 123 · Zbl 1301.81171 · doi:10.1007/JHEP03(2011)123
[44] Grosjean N and Niccoli G 2012 The τ2-model and the chiral Potts model revisited: completeness of Bethe equations from Sklyanin’s SOV method J. Stat. Mech. P11005 · doi:10.1088/1742-5468/2012/11/P11005
[45] Niccoli G 2013 An antiperiodic dynamical six-vertex model: I. Complete spectrum by SOV, matrix elements of the identity on separate states and connections to the periodic eight-vertex model J. Phys. A: Math. Theor.46 075003 · Zbl 1269.82012 · doi:10.1088/1751-8113/46/7/075003
[46] Niccoli G and Terras V 2015 Antiperiodic XXZ chains with arbitrary spins: complete eigenstate construction by functional equations in separation of variables Lett. Math. Phys.105 989-1031 · Zbl 1318.81032 · doi:10.1007/s11005-015-0759-9
[47] Levy-Bencheton D, Niccoli G and Terras V 2016 Antiperiodic dynamical 6-vertex model by separation of variables II: functional equations and form factors J. Stat. Mech. 033110 · Zbl 1457.82099 · doi:10.1088/1742-5468/2016/03/033110
[48] Niccoli G and Terras V 2016 The 8-vertex model with quasi-periodic boundary conditions J. Phys. A: Math. Theor.49 044001 · Zbl 1348.82023 · doi:10.1088/1751-8113/49/4/044001
[49] Grosjean N, Maillet J M and Niccoli G 2012 On the form factors of local operators in the lattice sine-Gordon model J. Stat. Mech. P10006 · Zbl 1456.81235 · doi:10.1088/1742-5468/2012/10/P10006
[50] Slavnov N A 1989 Calculation of scalar products of wave functions and form factors in the framework of the algebraic Bethe Ansatz Theor. Math. Phys.79 502-8 · doi:10.1007/BF01016531
[51] Kitanine N, Maillet J M and Terras V 1999 Form factors of the XXZ Heisenberg spin-1/2 finite chain Nucl. Phys. B 554 647-78 · Zbl 0972.82014 · doi:10.1016/S0550-3213(99)00295-3
[52] Kitanine N, Maillet J M and Terras V 2000 Correlation functions of the XXZ Heisenberg spin-1/2 chain in a magnetic field Nucl. Phys. B 567 554-82 · Zbl 0955.82010 · doi:10.1016/S0550-3213(99)00619-7
[53] Maillet J M and Terras V 2000 On the quantum inverse scattering problem Nucl. Phys. B 575 627-44 · Zbl 1037.82516 · doi:10.1016/S0550-3213(00)00097-3
[54] Kitanine N, Kozlowski K K, Maillet J M, Slavnov N A and Terras V 2011 A form factor approach to the asymptotic behavior of correlation functions in critical models J. Stat. Mech. P12010 · doi:10.1088/1742-5468/2011/12/P12010
[55] Kozlowski K K and Terras V 2011 Long-time and large-distance asymptotic behavior of the current-current correlators in the non-linear Schrödinger model J. Stat. Mech. P09013 · doi:10.1088/1742-5468/2011/09/P09013
[56] Kitanine N, Kozlowski K K, Maillet J M, Slavnov N A and Terras V 2012 Form factor approach to dynamical correlation functions in critical models J. Stat. Mech. P09001 · Zbl 1456.81239 · doi:10.1088/1742-5468/2012/09/P09001
[57] Kitanine N, Kozlowski K K, Maillet J M and Terras V 2014 Large-distance asymptotic behaviour of multi-point correlation functions in massless quantum models J. Stat. Mech. P05011 · Zbl 1456.81076 · doi:10.1088/1742-5468/2014/05/P05011
[58] Dugave M, Göhmann F and Kozlowski K K 2013 Thermal form factors of the XXZ chain and the large-distance asymptotics of its temperature dependent correlation functions J. Stat. Mech. P07010 · Zbl 1456.82251 · doi:10.1088/1742-5468/2013/07/P07010
[59] Caux J S, Hagemans R and Maillet J M 2005 Computation of dynamical correlation functions of Heisenberg chains: the gapless anisotropic regime J. Stat. Mech. P09003 · doi:10.1088/1742-5468/2005/09/P09003
[60] Caux J S and Maillet J M 2005 Computation of dynamical correlation functions of Heisenberg chains in a magnetic field Phys. Rev. Lett.95 077201 · doi:10.1103/PhysRevLett.95.077201
[61] Pereira R G, Sirker J, Caux J-S, Hagemans R, Maillet J M, White S R and Affleck I 2006 Dynamical spin structure factor for the anisotropic spin-1/2 Heisenberg chain Phys. Rev. Lett.96 257202 · Zbl 1456.82628 · doi:10.1103/PhysRevLett.96.257202
[62] Wang Y-S 2002 The scalar products and the norm of Bethe eigenstates for the boundary XXX Heisenberg spin-1/2 finite chain Nuclear Phys. B 622 633-49 · Zbl 1049.82016 · doi:10.1016/S0550-3213(01)00610-1
[63] Filali G and Kitanine N 2011 Spin chains with non-diagonal boundaries and trigonometric SOS model with reflecting end SIGMA7 012 · Zbl 1217.82019
[64] Yang W-L, Chen X, Feng J, Hao K, Hou B-Y, Shi K-J and Zhang Y-Z 2011 Determinant representations of scalar products for the open XXZ chain with non-diagonal boundary terms J. High Energy Phys.JHEP01(2011) 006 · Zbl 1214.82024 · doi:10.1007/JHEP01(2011)006
[65] Duval A and Pasquier V 2016 q-bosons, Toda lattice, Pieri rules and Baxter q-operator J. Phys. A: Math. Theor.49 154006 · Zbl 1351.37257 · doi:10.1088/1751-8113/49/15/154006
[66] Kitanine N, Maillet J M, Niccoli G and Terras V 2016 On determinant representations of scalar products and form factors in the SoV approach: the XXX case J. Phys. A: Math. Theor.49 104002 · Zbl 1342.82036 · doi:10.1088/1751-8113/49/10/104002
[67] Foda O and Wheeler M 2012 Variations on Slavnov’s scalar product J. High Energy Phys.JHEP10(2012) 096 · Zbl 1397.81074 · doi:10.1007/JHEP10(2012)096
[68] Sklyanin E K 1990 Functional Bethe Ansatz Integrable and Superintegrable Systems ed B A Kupershmidt (Singapore: World Scientific) pp 8-33 · Zbl 0943.00022 · doi:10.1142/9789812797179_0002
[69] Sklyanin E K 1992 Quantum inverse scattering method. Selected Topics Quantum Group and Quantum Integrable Systems(Nankai Lectures in Mathematical Physics) ed M-L Ge (Singapore: World Scientific) pp 63-97
[70] Grosjean N, Maillet J M and Niccoli G 2015 On the form factors of local operators in the Bazhanov-Stroganov and chiral Potts models Ann. Henri Poincaré16 1103 · Zbl 1320.82012 · doi:10.1007/s00023-014-0358-9
[71] Niccoli G 2013 Form factors and complete spectrum of XXX antiperiodic higher spin chains by quantum separation of variables J. Math. Phys.54 053516 · Zbl 1285.82021 · doi:10.1063/1.4807078
[72] Izergin A G 1987 Partition function of the six-vertex model in a finite volume Sov. Phys.—Dokl.32 878-9 · Zbl 0875.82015
[73] Tsuchiya O 1998 Determinant formula for the six-vertex model with reflecting end J. Math. Phys.39 5946-51 · Zbl 0938.82007 · doi:10.1063/1.532606
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.