×

Instantaneous turbulent kinetic energy modelling based on Lagrangian stochastic approach in CFD and application to wind energy. (English) Zbl 07540341

Summary: We present the construction of an original stochastic model for the instantaneous turbulent kinetic energy at a given point of a flow, and we validate estimator methods on this model with observational data examples. Motivated by the need for wind energy industry of acquiring relevant statistical information of air motion at a local place, we adopt the Lagrangian description of fluid flows to derive, from the 3D+time equations of the physics, a 0D+time-stochastic model for the time series of the instantaneous turbulent kinetic energy at a given position. Specifically, based on the Lagrangian stochastic description of a generic fluid-particles, we derive a family of mean-field dynamics featuring the square norm of the turbulent velocity. By approximating at equilibrium the characteristic nonlinear terms of the dynamics, we recover the so called Cox-Ingersoll-Ross process, which was previously suggested in the literature for modelling wind speed. We then propose a calibration procedure for the parameters employing both direct methods and Bayesian inference. In particular, we show the consistency of the estimators and validate the model through the quantification of uncertainty, with respect to the range of values given in the literature for some physical constants of turbulence modelling.

MSC:

76Fxx Turbulence
65Cxx Probabilistic methods, stochastic differential equations
60Hxx Stochastic analysis

Software:

NUTS; PyMC

References:

[1] Arenas-López, J. P.; Badaoui, M., The Ornstein-Uhlenbeck process for estimating wind power under a memoryless transformation, Energy, 213, Article 118842 pp. (2020)
[2] Arenas-López, J. P.; Badaoui, M., Stochastic modelling of wind speeds based on turbulence intensity, Renew. Energy, 115, 10-22 (2020)
[3] Badosa, J.; Gobet, E.; Grangereau, M.; Kim, D., Day-ahead probabilistic forecast of solar irradiance: a stochastic differential equation approach, (Forecasting and Risk Management for Renewable Energy (2017), Springer), 73-93
[4] Baehr, C., Nonlinear filtering for observations on a random vector field along a random path, ESAIM: Math. Model. Numer. Anal., 44, 921-945 (2010) · Zbl 1426.60044
[5] Baehr, C.; Beigbeder, C.; Couvreux, F.; Dabas, A.; Piguet, B., Retrieval of the turbulent and backscattering properties using a nonlinear filtering technique applied to Doppler LIDAR observation, (16th Int. Symp. for the Advancement of Boundary-Layer Remote Sensing. 16th Int. Symp. for the Advancement of Boundary-Layer Remote Sensing, ISARS (2012))
[6] Bensoussan, A.; Brouste, A., Cox-Ingersoll-Ross model for wind speed modeling and forecasting, Wind Energy, 19, 7, 1355-1365 (2016)
[7] Bensoussan, A.; Bertrand, P.; Brouste, A., A generalized linear model approach to seasonal aspects of wind speed modeling, J. Appl. Stat., 41, 8, 1694-1707 (2014) · Zbl 1514.62439
[8] Berkaoui, A.; Bossy, M.; Diop, A., Euler scheme for SDEs with non-Lipschitz diffusion coefficient: strong convergence, ESAIM Probab. Stat., 12, 1-11 (2008) · Zbl 1183.65004
[9] Bernardin, F.; Bossy, M.; Chauvin, C.; Drobinski, P.; Rousseau, A.; Salameh, T., Stochastic downscaling methods: application to wind refinement, Stoch. Environ. Res. Risk Assess., 23, 6, 851-859 (2009) · Zbl 1416.65027
[10] Bernardin, F.; Bossy, M.; Chauvin, C.; Jabir, J.-F.; Rousseau, A., Stochastic Lagrangian method for downscaling problems in computational fluid dynamics, Special Issue on Probabilistic Methods and Their Applications. Special Issue on Probabilistic Methods and Their Applications, ESAIM: Math. Model. Numer. Anal., 44, 5, 885-920 (2010) · Zbl 1426.76628
[11] Bossy, M., Some stochastic particle methods for nonlinear parabolic PDEs, ESAIM Proc., 15, 18-57 (2005) · Zbl 1090.65008
[12] Bossy, M.; Diop, A., Weak convergence analysis of the symmetrized Euler scheme for one dimensional SDEs with diffusion coefficient \(| x |^\alpha, \alpha \in [\frac{ 1}{ 2}, 1) (2004)\), Inria Research Report RR-5396. Available at
[13] Bossy, M.; Olivero, H., Strong convergence of the symmetrized Milstein scheme for some CEV-like SDEs, Bernoulli, 24, 3, 1995-2042 (2018) · Zbl 1426.60067
[14] Bossy, M.; Espina, J.; Morice, J.; Paris, C.; Rousseau, A., Modeling the wind circulation around Mills with a Lagrangian stochastic approach, SMAI J. Comput. Math., 2, 177-214 (2016) · Zbl 1416.76242
[15] Bossy, M.; Dupré, A.; Drobinski, P.; Violeau, L.; Briard, C., Stochastic Lagrangian approach for wind farm simulation, (Forecasting and Risk Management for Renewable Energy (2018), Springer International Publishing), 45-71
[16] Bossy, M.; Jabir, J-F.; Martínez, K., On the weak convergence rate of an exponential Euler scheme for SDEs governed by coefficients with superlinear growth, Bernoulli, 27, 1, 312-347 (2021), ISSN 1350-7265 · Zbl 1475.60130
[17] Carta, J. A.; Ramírez, P.; Velázquez, S., A review of wind speed probability distributions used in wind energy analysis: case studies in the Canary Islands, Renew. Sustain. Energy Rev., 13, 5, 933-955 (2009)
[18] Casella, G.; Berger, R., Statistical Inference, Duxbury Advanced Series (2002)
[19] Chang, W. Y., A literature review of wind forecasting methods, J. Power Energy Eng., 2, 04, 161-168 (2014)
[20] Cox, J.; Ingersoll, J.; Ross, S., A theory of the term structure of interest rates, Econometrica, 53, 2, 385-407 (1985) · Zbl 1274.91447
[21] Dereich, S.; Neuenkirch, A.; Szpruch, L., An Euler-type method for the strong approximation of the Cox-Ingersoll-Ross process, Proc. R. Soc. A, Math. Phys. Eng. Sci., 468, 2140, 1105-1115 (2012) · Zbl 1364.65013
[22] Dreeben, T.; Pope, S. B., Probability density function/Monte Carlo simulation of near-wall turbulent flows, J. Fluid Mech., 357, 141-166 (1998) · Zbl 0906.76073
[23] Drobinski, P.; Coulais, C.; Jourdier, B., Surface wind-speed statistics modelling: alternatives to the Weibull distribution and performance evaluation, Bound.-Layer Meteorol., 157, 1, 97-123 (2015)
[24] Durbin, P. A., A Reynolds stress model for near-wall turbulence, J. Fluid Mech., 249, 465-498 (1993)
[25] Durbin, P. A.; Reif-Pettersson, B. A., The elliptic relaxation method, (Closure Strategies for Turbulent and Transitional Flows (2002)), 127-152 · Zbl 1205.76143
[26] Durbin, P. A.; Speziale, C-G., Realizability of second-moment closure via stochastic analysis, J. Fluid Mech., 280, 395-407 (1994) · Zbl 0822.76044
[27] Edeling, W. N.; Cinnella, P.; Dwight, R. P.; Bijl, H., Bayesian estimates of parameter variability in the \(k - \varepsilon\) turbulence model, J. Comput. Phys., 258, C, 73-94 (2014) · Zbl 1349.76110
[28] Gelman, A.; Hoffman, M., The No-U-Turn Sampler: adaptively setting path lengths in Hamiltonian Monte Carlo, J. Mach. Learn. Res., 15, 1593-1623 (2014) · Zbl 1319.60150
[29] Göçmen, T.; Giebel, G., Estimation of turbulence intensity using rotor effective wind speed in Lillgrund and Horns Rev-I offshore wind farms, Renew. Energy, 99, 524-532 (2016)
[30] Haeffelin, M.; Barthès, L.; Bock, O.; Boitel, C.; Bony, S.; Bouniol, D.; Chepfer, H.; Chiriaco, M.; Cuesta, J.; Delanoë, J.; Drobinski, P.; Dufresne, J.-L.; Flamant, C.; Grall, M.; Hodzic, A.; Hourdin, F.; Lapouge, F.; Lemaître, Y.; Mathieu, A.; Morille, Y.; Naud, C.; Noël, V.; O’Hirok, W.; Pelon, J.; Pietras, C.; Protat, A.; Romand, B.; Scialom, G.; Vautard, R., SIRTA, a ground-based atmospheric observatory for cloud and aerosol research, Ann. Geophys., 23, 2, 253-275 (2005)
[31] Hanifi, S.; Liu, X.; Lin, Z.; Lotfian, S., A critical review of wind power forecasting methods—past, present and future, Energies, 13, 15, 3764 (2020)
[32] Honrubia, A.; Vigueras-Rodríguez, A.; Gómez-Lázaro, E., The Influence of Turbulence and Vertical Wind Profile in Wind Turbine Power Curve, Progress in Turbulence and Wind Energy, SPPHY 141, vol. IV (2000), Springer
[33] Ikeda, N.; Watanabe, S., Stochastic Differential Equations and Diffusion Processes (1981), North-Holland Publishing Company · Zbl 0495.60005
[34] Jabin, P-L.; Wang, Z., Active particles, vol. 1. Advances in theory, models and applications, (Mean Field Limit for Stochastic Particle Systems (2017), Birkhäuser-Springer: Birkhäuser-Springer Boston), 379-402
[35] Karatzas, I.; Shreve, S., Brownian Motion and Stochastic Calculus. Probability Theory and Stochastic Processes (1991), Springer-Verlag: Springer-Verlag Berlin · Zbl 0734.60060
[36] Lauren, M. K.; Menabde, M.; Austin, G. L., Analysis and simulation of surface-layer winds using multiplicative cascade models with self-similar probability densities, Bound.-Layer Meteorol., 100, 2, 263-286 (2001)
[37] Maghsoodi, Y., Solution of the extended CIR term structure and bond option valuation, Math. Finance, 6, 1, 89-109 (1996) · Zbl 0915.90026
[38] Manceau, R.; Hanjalić, K., Elliptic blending model: a new near-wall Reynolds-stress turbulence closure, Phys. Fluids, 14, 2, 744-754 (2002) · Zbl 1184.76343
[39] Miao, W. C., Quadratic variation estimators for diffusion models in finance (2004), PhD thesis
[40] Minier, J-P., Statistical descriptions of polydisperse turbulent two-phase flows, Phys. Rep., 665, 1-122 (2016), ISSN 0370-1573 · Zbl 1359.76153
[41] Minier, J-P.; Peirano, E., The pdf approach to turbulent polydispersed two-phase flows, Phys. Rep., 352, 1-214 (2001) · Zbl 0971.76039
[42] Murata, A.; Ohtake, H.; Oozeki, T., Modeling of uncertainty of solar irradiance forecasts on numerical weather predictions with the estimation of multiple confidence intervals, Renew. Energy, 117, 193-201 (2018)
[43] Neal, R. M., MCMC using Hamiltonian dynamics, (Handbook of Markov Chain Monte Carlo, vol. 2(11) (2011)), Article 2 pp. · Zbl 1229.65018
[44] Oden, J. T.; Moser, R.; Ghattas, O., Computer predictions with quantified uncertainty, Part II, SIAM News, 43, 10, 1-4 (2010)
[45] Pope, S. B., Pdf methods for turbulent reactive flows, Prog. Energy Combust. Sci., 11, 2, 119-192 (1985), ISSN 0360-1285
[46] Pope, S. B., On the relationship between stochastic Lagrangian models of turbulence and second-moment closures, AIP: Phys. Fluids, 973, 6 (1994) · Zbl 0827.76036
[47] Pope, S. B., Lagrangian PDF methods for turbulent flows, Annu. Rev. Fluid Mech., 26, 23-63 (1994) · Zbl 0802.76033
[48] Pope, S. B., Turbulent Flows (2000), Cambridge University Press · Zbl 0966.76002
[49] Protter, P., Stochastic Integration and Differential Equations. Stochastic Modeling and Applied Probability (2004), Springer-Verlag: Springer-Verlag Berlin · Zbl 1041.60005
[50] Rottner, L.; Baehr, C.; Dabas, A.; Hammoud, L., Stochastic method for turbulence estimation from Doppler lidar measurements, J. Appl. Remote Sens., 11, 4, Article 046001 pp. (2017)
[51] Salvatier, John; Wiecki, Thomas V.; Fonnesbeck, Christopher, Probabilistic programming in Python using PyMC3, PeerJ Comput. Sci., 2, Article e55 pp. (2016)
[52] Soman, S.; Zareipour, H.; Malik, O.; Mandal, P., A review of wind power and wind speed forecasting methods with different time horizons, (North American Power Symposium 2010 (2010), IEEE), 1-8
[53] Stohl, A., Computation, accuracy and applications of trajectories—a review and bibliography, Atmos. Environ., 32, 6, 947-966 (1998), ISSN 1352-2310
[54] Suzat, F.; Baehr, C.; Dabas, A., A fast atmospheric turbulent parameters estimation using particle filtering. Application to LIDAR observations, Inst. Phys. Conf. Ser., 318, Article 072019 pp. (2011)
[55] Tang, C. Y.; Chen, S. X., Parameter estimation and bias correction for diffusion processes, J. Econom., 149, 1, 65-81 (2009) · Zbl 1429.62370
[56] Wacławczyk, M.; Pozorski, J.; Minier, J-P., Probability density function computation of turbulent flows with a new near-wall model, Phys. Fluids, 16, 5, 1410-1422 (2004) · Zbl 1186.76555
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.