×

Finite-time bounded control for coupled parabolic PDE-ODE systems subject to boundary disturbances. (English) Zbl 1459.93072

Summary: In this paper, the finite-time bounded control problem for coupled parabolic PDE-ODE systems subject to time-varying boundary disturbances and to time-invariant boundary disturbances is considered. First, the concept of finite-time boundedness is extended to coupled parabolic PDE-ODE systems. A Neumann boundary feedback controller is then designed in terms of the state variables. By applying the Lyapunov-like functional method, sufficient conditions which ensure the finite-time boundedness of closed-loop systems in the presence of time-varying boundary disturbances and time-invariant boundary disturbances are provided, respectively. Finally, the issues regarding the finite-time boundedness of coupled parabolic PDE-ODE systems are converted into the feasibility of linear matrix inequalities (LMIs), and the effectiveness of the proposed results is validated with two numerical simulations.

MSC:

93C20 Control/observation systems governed by partial differential equations
93B52 Feedback control
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93D15 Stabilization of systems by feedback
Full Text: DOI

References:

[1] Lasiecka, I., Mathematical Control Theory of Coupled PDEs (2002), Philadelphia, PA, USA: SIAM, Philadelphia, PA, USA · Zbl 1032.93002
[2] Lifshitz, R.; Roukes, M. L., Thermoelastic damping in micro-and nanomechanical systems, Physical Review B, 61, 8, 5600-5609 (2000) · doi:10.1103/physrevb.61.5600
[3] Krstic, M.; Smyshlyaev, A., Boundary Control of PDEs: A Course on Backstepping Designs (2008), San Diego, CA, USA: SIAM, San Diego, CA, USA · Zbl 1149.93004
[4] Krstic, M.; Smyshlyaev, A., Backstepping boundary control for first-order hyperbolic PDEs and application to systems with actuator and sensor delays, Systems & Control Letters, 57, 9, 750-758 (2008) · Zbl 1153.93022 · doi:10.1016/j.sysconle.2008.02.005
[5] Susto, G. A.; Krstic, M., Control of PDE-ODE cascades with Neumann interconnections, Journal of the Franklin Institute, 347, 1, 284-314 (2010) · Zbl 1298.93279 · doi:10.1016/j.jfranklin.2009.09.005
[6] Krstic, M., Control of an unstable reaction-diffusion PDE with long input delay, Systems and Control Letters, 58, 10-11, 773-782 (2009) · Zbl 1181.93030 · doi:10.1016/j.sysconle.2009.08.006
[7] Zhou, Z.; Xu, C., Stabilization of a second order ODE-heat system coupling at intermediate point, Automatica, 60, 57-64 (2015) · Zbl 1331.93180 · doi:10.1016/j.automatica.2015.06.039
[8] Guo, Y. P.; Liu, J. J., Stabilization of ODE-Schrodinger cascaded systems subject to boundary control matched disturbance, Electronic Journal of Differential Equations, 248, 1-22 (2015) · Zbl 1327.93226
[9] Wang, J.-M.; Liu, J.-J.; Ren, B.; Chen, J., Sliding mode control to stabilization of cascaded heat PDE-ODE systems subject to boundary control matched disturbance, Automatica, 52, 23-34 (2015) · Zbl 1309.93124 · doi:10.1016/j.automatica.2014.10.117
[10] Dorato, P., Short-time stability in linear time-varying systems, Proceedings of the IRE International Convention Record Part, 4, 83-87 (1961)
[11] Weiss, L.; Infante, E. F., On the stability of systems defined over a finite time interval, Proceeding of the National Academy of Sciences of the United States of America, 54, 1, 44-48 (1965) · Zbl 0134.30702 · doi:10.1073/pnas.54.1.44
[12] Filippo, F. S.; Dorato, P., Short-time parameter optimization with flight control applications, Automatica, 10, 5, 425-430 (1974) · doi:10.1016/0005-1098(74)90069-7
[13] Amato, F.; Ariola, M.; Cosentino, C., Finite-time stability of linear time-varying systems: analysis and controller design, IEEE Transactions on Automatic Control, 55, 4, 1003-1008 (2010) · Zbl 1368.93457 · doi:10.1109/tac.2010.2041680
[14] Amato, F.; Ariola, M., Finite-time control of discrete-time linear systems, IEEE Transactions on Automatic Control, 50, 5, 724-729 (2005) · Zbl 1365.93182 · doi:10.1109/tac.2005.847042
[15] Guo, Y.; Yao, Y.; Wang, S.; Ma, K.; Liu, K.; Guo, J., Input-output finite-time stabilization of linear systems with finite-time boundedness, ISA Transactions, 53, 4, 977-982 (2014) · doi:10.1016/j.isatra.2014.05.018
[16] Amato, F.; Ariola, M.; Ambrosino, F., Finite-time stability of linear systems: an approach based on polyhedral Lyapunov functions, IET Control Theory & Applications, 4, 9, 1767-1774 (2010) · doi:10.1049/iet-cta.2009.0182
[17] Xue, W. P.; Mao, W. J., Admissible finite-time stability and stabilization of uncertain discrete singular systems, Journal of Dynamic Systems, Measurement, and Control, 135, 3, 0310181-0310186 (2013) · doi:10.1115/1.4023213
[18] Bhat, S. P.; Bernstein, D. S., Finite-time stability of continuous autonomous systems, SIAM Journal on Control and Optimization, 38, 3, 751-766 (2000) · Zbl 0945.34039 · doi:10.1137/s0363012997321358
[19] Moulay, E.; Perruquetti, W., Finite time stability and stabilization of a class of continuous systems, Journal of Mathematical Analysis and Applications, 323, 2, 1430-1443 (2006) · Zbl 1131.93043 · doi:10.1016/j.jmaa.2005.11.046
[20] Chen, W.; Jiao, L. C., Finite-time stability theorem of stochastic nonlinear systems, Automatica, 46, 12, 2105-2108 (2010) · Zbl 1401.93213 · doi:10.1016/j.automatica.2010.08.009
[21] Ryan, E. P., Finite-time stabilization of uncertain nonlinear planar systems, Dynamics and Control, 1, 1, 83-94 (1991) · Zbl 0742.93068 · doi:10.1007/bf02169426
[22] Li, X.; Ho, D. W. C.; Cao, J., Finite-time stability and settling-time estimation of nonlinear impulsive systems, Automatica, 99, 361-368 (2019) · Zbl 1406.93260 · doi:10.1016/j.automatica.2018.10.024
[23] Yang, X.; Li, X.; Cao, J., Robust finite-time stability of singular nonlinear systems with interval time-varying delay, Journal of the Franklin Institute, 355, 3, 1241-1258 (2018) · Zbl 1393.93101 · doi:10.1016/j.jfranklin.2017.12.018
[24] Bartolini, G.; Ferrara, A.; Utkin, V. I., Adaptive sliding mode control in discrete-time systems, Automatica, 31, 5, 769-773 (1995) · Zbl 0825.93097 · doi:10.1016/0005-1098(94)00154-b
[25] James, M. R.; Baras, J. S.; Elliott, R. J., Risk-sensitive control and dynamic games for partially observed discrete-time nonlinear systems, IEEE Transactions on Automatic Control, 39, 4, 780-792 (1994) · Zbl 0807.93067 · doi:10.1109/9.286253
[26] Coron, J.-M., On the stabilization in finite time of locally controllable systems by means of continuous time-varying feedback law, SIAM Journal on Control and Optimization, 33, 3, 804-833 (1995) · Zbl 0828.93054 · doi:10.1137/s0363012992240497
[27] Li, X.; Mao, W., Finite-time stability and stabilisation of distributed parameter systems, IET Control Theory & Applications, 11, 5, 640-646 (2017) · doi:10.1049/iet-cta.2016.1087
[28] Li, M.; Mao, W., DC-boundary finite-time stabilisation for distributed parameter systems, IET Control Theory & Applications, 14, 15, 2186-2196 (2020) · Zbl 1542.93349 · doi:10.1049/iet-cta.2019.0542
[29] Amato, F.; Ariola, M.; Dorato, P., Finite-time control of linear systems subject to parametric uncertainties and disturbances, Automatica, 37, 9, 1459-1463 (2001) · Zbl 0983.93060 · doi:10.1016/s0005-1098(01)00087-5
[30] Amato, F.; Ariola, M.; Cosentino, C., Finite-time control of linear time-varying systems via output feedback, Proceedings of the 2005 American Control Conference · doi:10.1109/ACC.2005.1470741
[31] Sun, Y. G.; Xu, J., Finite-time boundedness and stabilization of networked control systems with time delay, Mathematical Problems in Engineering, 2012 (2012) · Zbl 1264.93212 · doi:10.1155/2012/705828
[32] Du, H. B.; Lin, X. Z.; Li, S. H., Finite-time boundedness and stabilization of switched linear systems, Kybernetika, 46, 5, 870-889 (2010) · Zbl 1205.93076
[33] LaSalle, J.; Lefschetz, S., Stability by Liapunov’s Direct Method with Applications (1961), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0098.06102
[34] Hardy, G. H.; Littlewood, J. E.; Polya, G., Inequalities (1952), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0047.05302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.