×

Adaptive inverse backlash boundary vibration control design for an Euler-Bernoulli beam system. (English) Zbl 1437.93055

Summary: In this paper, we address the vibration suppression problem of an Euler-Bernoulli beam structure suffering from the input backlash nonlinearity and the unknown disturbance. Considering the nonlinearity and discontinuity of the backlash with the uncertain parameter, an adaptive inverse backlash dynamics is proposed to handle the nonlinear characteristic and correct the mismatch of the backlash parameter. Further, an adaptive vibration control law is developed to improve the system performance via combining with the proposed inverse backlash dynamics. Meanwhile, a disturbance observer is designed to reject the external boundary disturbance, and we bring a logarithmic barrier function in control design to ensure the end-point displacement of this system be constrained in the desired limitation. At last, we analyze the stability of this flexible system and the effectiveness of the proposed control method with simulation experiments.

MSC:

93C40 Adaptive control/observation systems
70Q05 Control of mechanical systems
74H50 Random vibrations in dynamical problems in solid mechanics
93C10 Nonlinear systems in control theory
Full Text: DOI

References:

[1] Endo, T.; Sasaki, M.; Matsuno, F.; Jia, Y., Contact-force control of a flexible Timoshenko arm in rigid/soft environment, IEEE Trans. Autom. Control, 62, 5, 2546-2553 (2016) · Zbl 1366.74034
[2] Paranjape, A. A.; Guan, J.; Chung, S.-J.; Krstic, M., PDE boundary control for flexible articulated wings on a robotic aircraft, IEEE Trans. Robot., 29, 3, 625-640 (2013)
[3] He, W.; Yan, Z.; Sun, C.; Chen, Y., Adaptive neural network control of a flapping wing micro aerial vehicle with disturbance observer, IEEE Trans. Cybern., 47, 10, 3452-3465 (2017)
[4] Do, K. D., Stochastic boundary control design for extensible marine risers in three dimensional space, Automatica, 77, 184-197 (2017) · Zbl 1355.93204
[5] Do, K. D., Boundary control design for extensible marine risers in three dimensional space, J. Sound Vib., 388, 3, 1-19 (2017) · Zbl 1355.93204
[6] Zhao, Z.; Liu, Z.; Li, Z.; Wang, N.; Yang, J., Control design for a vibrating flexible marine riser system, J. Frankl. Inst., 354, 18, 8117-8133 (2017) · Zbl 1380.93219
[7] Zhao, Z.; Liu, Y.; He, W.; Fei, L., Adaptive boundary control of an axially moving belt system with high acceleration/deceleration, IET Control Theory Appl., 10, 11, 1299-1306 (2016)
[8] Wu, H.-N.; Wang, J.-W., Static output feedback control via PDE boundary and ODE measurements in linear cascaded ODE-beam systems, Automatica, 50, 11, 2787-2798 (2014) · Zbl 1300.93081
[9] He, W.; Meng, T.; Huang, D.; Li, X., Adaptive boundary iterative learning control for an Euler-Bernoulli beam system with input constraint, IEEE Trans. Neural Netw. Learn. Syst., 29, 5, 1539-1549 (2018)
[10] Wu, H.-N.; Zhu, H.-Y., Guaranteed cost fuzzy state observer design for semilinear parabolic PDE systems under pointwise measurements, Automatica, 85, 53-60 (2017) · Zbl 1375.93076
[11] Wang, J.-M.; Liu, J.-J.; Ren, B.; Chen, J., Sliding mode control to stabilization of cascaded heat PDE-ODE systems subject to boundary control matched disturbance, Automatica, 52, 23-34 (2015) · Zbl 1309.93124
[12] Sun, C.; He, W.; Hong, J., Neural network control of a flexible robotic manipulator using the lumped spring-mass model, IEEE Trans. Syst. Man Cybern.: Syst., 47, 8, 1863-1874 (2016)
[13] Wang, F.-Y.; Gao, Y., On frequency sensitivity and mode orthogonality of flexible robotic manipulators, IEEE/CAA J. Autom. Sin., 3, 4, 394-397 (2016)
[14] He, W.; Li, Z.; Chen, C. L.P., A survey of human-centered intelligent robots: issues and challenges, IEEE/CAA J. Autom. Sin., 4, 4, 602-609 (2017)
[15] He, W.; Dong, Y., Adaptive fuzzy neural network control for a constrained robot using impedance learning, IEEE Trans. Neural Netw. Learn. Syst., 29, 4, 1174-1186 (2018)
[16] Sun, C.; Gao, H.; He, W.; Yu, Y., Fuzzy neural network control of a flexible robotic manipulator using assumed mode method, IEEE Trans. Neural Netw. Learn. Syst., 29, 11, 5214-5227 (2018)
[17] Wang, Y.; Wang, R.; Wang, S.; Tan, M.; Yu, J., Underwater bio-inspired propulsion: from inspection to manipulation, IEEE Trans. Ind. Electron. (2020)
[18] Wang, N.; Wu, H.-N.; Guo, L., Coupling-observer-based nonlinear control for flexible air-breathing hypersonic vehicles, Nonlinear Dyn., 78, 3, 2141-2159 (2014) · Zbl 1345.93070
[19] Dai, J.; Ren, B., UDE-based robust boundary control for an unstable parabolic PDE with unknown input disturbance, Automatica, 93, 363-368 (2018) · Zbl 1400.93113
[20] He, W.; Ge, S. S., Cooperative control of a nonuniform gantry crane with constrained tension, Automatica, 66, 4, 146-154 (2016) · Zbl 1335.93012
[21] Karafyllis, I.; Krstic, M., Sampled-data boundary feedback control of 1-D parabolic PDEs, Automatica, 87, 226-237 (2018) · Zbl 1378.93077
[22] He, X.; He, W.; Shi, J.; Sun, C., Boundary vibration control of variable length crane systems in two dimensional space with output constraints, IEEE/ASME Trans. Mechatron., 22, 5, 1952-1962 (2017)
[23] Guo, W.; Guo, B.-Z., Parameter estimation and non-collocated adaptive stabilization for a wave equation subject to general boundary harmonic disturbance, IEEE Trans. Autom. Control, 58, 7, 1631-1643 (2013) · Zbl 1369.93549
[24] Guo, B.-Z.; Jin, F.-F., Output feedback stabilization for one-dimensional wave equation subject to boundary disturbance, IEEE Trans. Autom. Control, 60, 3, 824-830 (2015) · Zbl 1360.93544
[25] Shah, U. H.; Hong, K.-S., Active vibration control of a flexible rod moving in water: application to nuclear refueling machines, Automatica, 93, 231-243 (2018) · Zbl 1400.93235
[26] Zhao, Z.; Liu, Y.; Guo, F.; Fu, Y., Vibration control and boundary tension constraint of an axially moving string system, Nonlinear Dyn., 89, 4, 2431-2440 (2017) · Zbl 1377.93124
[27] Huang, D.; Xu, J.-X.; Li, X.; Xu, C.; Yu, M., D-type anticipatory iterative learning control for a class of inhomogeneous heat equations, Automatica, 49, 8, 2397-2408 (2013) · Zbl 1364.93365
[28] Liu, Z.; Liu, J.-K.; He, W., Modeling and vibration control of a flexible aerial refueling hose with variable lengths and input constraint, Automatica, 77, 3, 302-310 (2017) · Zbl 1355.93037
[29] Xu, B., Robust adaptive neural control of flexible hypersonic flight vehicle with dead-zone input nonlinearity, Nonlinear Dyn., 80, 3, 1509-1520 (2015) · Zbl 1351.93102
[30] Chen, M.; Tao, G., Adaptive fault-tolerant control of uncertain nonlinear large-scale systems with unknown dead-zone, IEEE Trans. Cybern., 46, 8, 1851-1862 (2016)
[31] He, W.; Ouyang, Y.; Hong, J., Vibration control of a flexible robotic manipulator in the presence of input deadzone, IEEE Trans. Ind. Inform., 13, 1, 48-59 (2017)
[32] Zhao, Z.; Wang, X.; Zhang, C.; Liu, Z.; Yang, J., Neural network based boundary control of a vibrating string system with input deadzone, Neurocomputing, 275, 1021-1027 (2018)
[33] Li, H.; Zhao, S.; He, W.; Lu, R., Adaptive finite-time tracking control of full state constrained nonlinear systems with dead-zone, Automatica, 100, 99-107 (2019) · Zbl 1411.93102
[34] Wen, C.; Zhou, J.; Liu, Z.; Su, H., Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance, IEEE Trans. Autom. Control, 56, 7, 1672-1678 (2011) · Zbl 1368.93317
[35] He, W.; Sun, Y.; Yan, Z.; Yang, C.; Li, Z.; Kaynak, O., Disturbance observer-based neural network control of cooperative multiple manipulators with input saturation, IEEE Trans. Neural Netw. Learn. Syst. (2020)
[36] Vörös, J., Identification of nonlinear cascade systems with time-varying backlash, J. Electr. Eng., 62, 2, 87-92 (2011)
[37] Chen, M.; Ge, S. S.; Ren, B., Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints, Automatica, 47, 3, 452-465 (2011) · Zbl 1219.93053
[38] He, X.; He, W.; Sun, C., Robust adaptive vibration control for an uncertain flexible Timoshenko robotic manipulator with input and output constraints, Int. J. Syst. Sci., 48, 13, 2860-2870 (2017) · Zbl 1386.93090
[39] Zhang, S.; He, W.; Huang, D., Active vibration control for a flexible string system with input backlash, IET Control Theory Appl., 10, 7, 800-805 (2016)
[40] Liu, Y.-J.; Tong, S., Adaptive fuzzy control for a class of nonlinear discrete-time systems with backlash, IEEE Trans. Fuzzy Syst., 22, 5, 1359-1365 (2014)
[41] Hewitt, E.; Stromberg, K., Adaptive Backstepping Control of Uncertain Systems: Nonsmooth Nonlinearities, Interactions or Time-Variations (2008), Springer: Springer Berlin Heidelberg · Zbl 1146.93002
[42] He, W.; He, X.; Zou, M.; Li, H., PDE model-based boundary control design for a flexible robotic manipulator with input backlash, IEEE Trans. Control Syst. Technol., 27, 2, 790-797 (2018)
[43] Krstic, M.; Smyshlyaev, A., Boundary Control of PDEs: A Course on Backstepping Designs (2008), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia, USA · Zbl 1149.93004
[44] Polycarpou, M. M.; Ioannou, P. A., A robust adaptive nonlinear control design, Automatica, 32, 3, 423-427 (1996) · Zbl 0847.93031
[45] Li, H.; Bai, L.; Wang, L.; Zhou, Q.; Wang, H., Adaptive neural control of uncertain nonstrict-feedback stochastic nonlinear systems with output constraint and unknown dead zone, IEEE Trans. Syst. Man Cybern.: Syst., 47, 8, 2048-2059 (2016)
[46] Liu, J.; Gu, Y.; Zha, L.; Liu, Y.; Cao, J., Event-triggered H∞ load frequency control for multiarea power systems under hybrid cyber attacks, IEEE Trans. Syst. Man Cybern.: Syst. (2019)
[47] Liu, J.; Wei, L.; Xie, X.; Tian, E.; Fei, S., Quantized stabilization for T-S fuzzy systems with hybrid-triggered mechanism and stochastic cyber-attacks, IEEE Trans. Fuzzy Syst., 26, 6, 3820-3834 (2018)
[48] Liu, J.; Wei, L.; Xie, X.; Yue, D., Distributed event-triggered state estimators design for sensor networked systems with deception attacks, IET Control Theory Appl., 13, 17, 2783-2791 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.