×

Complex powers of multivalued linear operators with polynomially bounded \(C\)-resolvent. (English) Zbl 07405374

Summary: We construct complex powers of multivalued linear operators with polynomially bounded \(C\)-resolvent existing on an appropriate region of the complex plane containing the interval \((-\infty,0]\). In our approach, the operator \(C\) is not necessarily injective. We clarify the basic properties of introduced powers and analyze the abstract incomplete fractional differential inclusions associated with the use of modified Liuoville right-sided derivatives. We also consider abstract incomplete differential inclusions of second order, working in the general setting of sequentially complete locally convex spaces.

MSC:

47-XX Operator theory
34-XX Ordinary differential equations

References:

[1] El Alaarabiou H., “Calcul fonctionnel et puissance fractionnaire d” opérateurs linéaries multivoques non négatifs“, Comptes Rendus de l”Académie des Sciences. Series I. Mathematics, 313 (1991), 163-166 · Zbl 0744.47010
[2] El Alaarabiou H., Calcul fonctionnel et puissance fractionnaire d’ opérateurs linéaries multivoques non négatifs, Pub. Math. Besançon, An. non linéaire, 13, 1991 · Zbl 0744.47010
[3] Mart\'inez C., Sanz M., Pastor J., “A functional calculus and fractional powers for multivalued linear operators”, Osaka Journal of Mathematics, 37 (2000), 551-576 · Zbl 0979.47013
[4] Pastor J., “On uniqueness of fractional powers of multi-valued linear operators and the incomplete Cauchy problem”, Annali di Matematica Pura ed Applicata, 191 (2012), 167-180 · Zbl 1241.47004 · doi:10.1007/s10231-010-0182-x
[5] Yagi A., “Generation theorem of semigroup for multivalued linear operators”, Osaka Journal of Mathematics, 28 (1991), 385-410 · Zbl 0812.47045
[6] A. Favini, A. Yagi, Degenerate Differential Equations in Banach Spaces, Chapman and Hall/CRC Pure and Applied Mathematics Publ., New York, 1998, 312 pp. · Zbl 0913.34001
[7] Fedorov V.E., “Infinitely differentiable semigroups of operators with kernel”, Siberian Mathematical Journal, 40 (1999), 1199-1210 · Zbl 0944.47025 · doi:10.1007/BF02677544
[8] Fedorov V.E., “Weak solutions of linear equations of Sobolev type and semigroups of operators”, Izvestiya: Mathematics, 67 (2003), 797-813 · Zbl 1090.47027 · doi:10.1070/IM2003v067n04ABEH000445
[9] Favaron A., Favini A., “Fractional powers and interpolation theory for multivalued linear operators and applications to degenerate differential equations”, Tsukuba Journal of Mathematics, 35 (2011), 259-323 · Zbl 1251.46009 · doi:10.21099/tkbjm/1331658708
[10] Balakrishnan A.V., “Fractional powers of closed operators and the semigroups generated by them”, Pacific Journal of Mathematics, 10 (1960), 419-437 · Zbl 0103.33502 · doi:10.2140/pjm.1960.10.419
[11] Komatsu H., “Fractional powers of operators”, Pacific Journal of Mathematics, 19 (1966), 285-346 · Zbl 0154.16104 · doi:10.2140/pjm.1966.19.285
[12] Periago F., Straub B., “A functional calculus for almost sectorial operators and applications to abstract evolution equations”, Journal of Evolution Equations, 2 (2002), 41-68 · Zbl 1005.47015 · doi:10.1007/s00028-002-8079-9
[13] Martinez C., Sanz M., Redondo A., “Fractional powers of almost non-negative operators”, Fractional Calculus and Applied Analysis, 8 (2005), 201-230 · Zbl 1132.47013
[14] Chen C., Kostić M., Li M., “Complex powers of almost \(C\)-nonnegative operators”, Contemporary Analysis and Applied Mathematics, 2 (2014), 1-77 · Zbl 1317.47043
[15] Chen C., Kostić M., Li M., Žigić M., “Complex powers of \(C\)-sectorial operators. Part I”, Taiwanese Journal of Mathematics, 17 (2013), 465-499 · Zbl 1305.47027 · doi:10.11650/tjm.17.2013.1653
[16] Kostić M., “Complex powers of non-densely defined operators”, Publ. Inst. Math., Nouv. Sér., 90 (2011), 47-64 · Zbl 1289.47086 · doi:10.2298/PIM1104047K
[17] Straub B., “Fractional powers of operators with polynomially bounded resolvent and the semigroups generated by them”, Hiroshima Mathematical Journal, 24 (1994), 529-548 · Zbl 0835.47032 · doi:10.32917/hmj/1206127925
[18] deLaubenfels R., Yao F., Wang S.W., “Fractional powers of operators of regularized type”, Journal of Mathematical Analysis and Applications, 199:3 (1996), 910-933 · Zbl 0959.47027 · doi:10.1006/jmaa.1996.0182
[19] Kostić M., “Abstract degenerate incomplete Cauchy problems”, Tsukuba Journal of Mathematics, 40 (2016), 29-53 · Zbl 1356.47049 · doi:10.21099/tkbjm/1474747486
[20] M. Kostić, Abstract Volterra Integro-Differential Equations, Taylor and Francis Group/CRC Press/Science Publishers, Boca Raton-New York, 2015, 484 pp. · Zbl 1318.45004
[21] Meise R., Vogt D., Introduction to Functional Analysis, Clarendon Press, New York, 1997, 448 pp. · Zbl 0924.46002
[22] Martinez C., Sanz M., The Theory of Fractional Powers of Operators, North-Holland Mathematics Studies, no. 187, Elseiver, Amsterdam, 2001, 378 pp. · Zbl 0971.47011
[23] Xiao T.-J., Liang J., The Cauchy Problem for Higher-Order Abstract Differential Equations, Springer-Verlag, Berlin, 1998 · Zbl 0915.34002
[24] Kostić M., Abstract Degenerate Volterra Integro-Differential Equations, Mathematical Institute SANU, Belgrade, 2020 · Zbl 1318.45004
[25] Arendt W., Batty C.J.K., Hieber M., Neubrander F., Vector-valued Laplace Transforms and Cauchy Problems, no. 96, Birkhäuser/Springer Basel AG, Basel, 2001, xii+539 pp. · Zbl 0978.34001
[26] R. W. Carroll, R. E. Showalter, Singular and Degenerate Cauchy Problems, Academic Press Publ., New York, 1976
[27] I. V. Melnikova, A. I. Filinkov, Abstract Cauchy Problems: Three Approaches, Chapman and Hall/CRC Publ., Boca Raton, 2001 · Zbl 0982.34001
[28] G. V. Demidenko, S. V. Uspenskii, Partial Differential Equations And Systems Not Solvable With Respect To The Highest-Order Derivative, Pure and Applied Mathematics, Marcel Dekker, Inc., New York-Basel, 2003, 490 pp. · Zbl 1061.35001
[29] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht-Boston, 2003, vii+216 pp. · Zbl 1102.47061
[30] J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser-Verlag Publ., Basel, 1993, xxvi+366 pp. · Zbl 0784.45006
[31] S. G. Samko, A. A. Kilbas, O. I. Marichev O.I., Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York, 1993 · Zbl 0818.26003
[32] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999, xxiii+340 pp. · Zbl 0924.34008
[33] E. Bazhlekova, Fractional Evolution Equations in Banach Spaces, PhD Thesis, Eindhoven University of Technology, Eindhoven, 2001, 107 pp. · Zbl 0989.34002
[34] K. Diethelm, The Analysis of Fractional Differential Equations, Springer-Verlag, Berlin, 2010, 166 pp. · Zbl 1215.34001
[35] Kostić M., Generalized Semigroups and Cosine Functions, Mathematical Institute SANU, Belgrade, 2011 · Zbl 1217.47001
[36] A. A. Kilbas, H. M. Srivastava , J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006, 540 pp. · Zbl 1092.45003
[37] Cross R., Multivalued Linear Operators, Marcel Dekker, Inc., New York, 1998, 352 pp. · Zbl 0911.47002
[38] Kostić M., “Degenerate \(K\)-convoluted \(C\)-semigroups and degenerate \(K\)-convoluted \(C\)-cosine functions in locally convex spaces”, Chelyabinsk Physical and Mathematical Journal, 3 (2018), 90-110 · Zbl 1539.47083
[39] Engel K.-J., Nagel R., One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, Berlin, 2000, xxi+589 pp. · Zbl 0952.47036
[40] Arendt W., Favini A., “Integrated solutions to implicit differential equations”, Rendiconti del Seminario Matematico Universita e Politecnico di Torino, 51 (1993), 315-329 · Zbl 0814.34049
[41] Arendt W., El-Mennaoui O., Keyantuo V.V., “Local integrated semigroups: evolution with jumps of regularity”, Journal of Mathematical Analysis and Applications, 186 (1994), 572-595 · Zbl 0833.47034 · doi:10.1006/jmaa.1994.1318
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.