×

Quantitative translations for viscosity approximation methods in hyperbolic spaces. (English) Zbl 1495.47106

The authors show, in a very general metric framework, that convergence of what they call ‘Browder-type sequences’ (i.e., approximating curves of resolvents) and of Halpern iterations imply the convergence of the corresponding viscosity algorithms. They also derive, using proof mining techniques, rates of metastability for the viscosity algorithms conditional on rates of metastability for the corresponding Browder/Halpern sequences. In addition, in the case where the target point of the iteration is unique, they derive convergence rates by using the modulus of uniqueness technique.

MSC:

47J25 Iterative procedures involving nonlinear operators
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
03F10 Functionals in proof theory
53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces

References:

[1] Aoyama, K.; Toyoda, M., Approximation of zeros of accretive operators in a Banach space, Isr. J. Math., 220, 2, 803-816 (2017) · Zbl 1487.47096
[2] Aoyama, K.; Toyoda, M., Approximation of common fixed points of strongly nonexpansive sequences in a Banach space, J. Fixed Point Theory Appl., 21, 1, 1-16 (2019) · Zbl 1514.47103
[3] Bauschke, H. H., The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space, J. Math. Anal. Appl., 202, 1, 150-159 (1996) · Zbl 0956.47024
[4] Boikanyo, O.; Moroşanu, G., Inexact Halpern-type proximal point algorithm, J. Glob. Optim., 51, 1, 11-26 (2011) · Zbl 1295.47073
[5] Brezis, H.; Sibony, M., Methodes d’approximation et d’iteration pour les operateurs monotones, Arch. Ration. Mech. Anal., 28, 59-82 (1968) · Zbl 0157.22501
[6] Bridson, M.; Haefliger, A., Metric Spaces of Non-positive Curvature, vol. 319 (2013), Springer Science & Business Media
[7] Browder, F. E., Convergence of approximants to fixed points of nonexpansive nonlinear mappings in Banach spaces, Arch. Ration. Mech. Anal., 24, 1, 82-90 (1967) · Zbl 0148.13601
[8] Bruhat, F.; Tits, J., Groupes réductifs sur un corps local, Publ. Math. IHÉS, 41, 1, 5-251 (1972) · Zbl 0254.14017
[9] Chang, S.-S., Viscosity approximation methods for a finite family of nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., 323, 1402-1416 (2006) · Zbl 1111.47057
[10] Cominetti, R.; Soto, J.; Vaisman, J., On the rate of convergence of Krasnosel’skiĭ-Mann iterations and their connection with sums of Bernoullis, Isr. J. Math., 199, 757-772 (2014) · Zbl 1297.47074
[11] Dinis, B.; Pinto, P., Quantitative results on the multi-parameters proximal point algorithm, J. Convex Anal., 28, 3, 729-750 (2021) · Zbl 1540.47093
[12] Ferreira, F.; Leuştean, L.; Pinto, P., On the removal of weak compactness arguments in proof mining, Adv. Math., 354, Article 106728 pp. (2019) · Zbl 1446.03100
[13] García-Falset, J., The asymptotic behavior of the solutions of the Cauchy problem generated by ϕ-accretive operators, J. Math. Anal. Appl., 310, 2, 594-608 (2005) · Zbl 1079.35050
[14] Goebel, K.; Kirk, W. A., Iteration processes for nonexpansive mappings, (Singh, S. P.; Thomeier, S.; Watson, B., Topological Methods in Nonlinear Functional Analysis. Topological Methods in Nonlinear Functional Analysis, Contemporary Mathematics, vol. 21 (1983), AMS), 115-123 · Zbl 0525.47040
[15] Goebel, K.; Reich, S., Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Monographs and Textbooks in Pure and Applied Mathematics, vol. 83 (1984) · Zbl 0537.46001
[16] Güler, O., On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim., 29, 2, 403-419 (1991) · Zbl 0737.90047
[17] Gwinner, J., On the convergence of some iteration processes in uniformly convex Banach spaces, Proc. Am. Math. Soc., 71, 1, 29-35 (1978) · Zbl 0393.47040
[18] Halpern, B., Fixed points of nonexpanding maps, Bull. Am. Math. Soc., 73, 6, 957-961 (1967) · Zbl 0177.19101
[19] Jung, J. S., Viscosity approximation methods for a family of finite nonexpansive mappings in Banach spaces, Nonlinear Anal., 64, 11, 2536-2552 (2006) · Zbl 1101.47053
[20] Jung, J. S.; Cho, Y. J.; Agarwal, R. P., Iterative schemes with control conditions for a family of finite nonexpansive mappings in Banach spaces, Fixed Point Theory Appl., 2005, 2, 125-135 (2005) · Zbl 1109.47056
[21] Kamimura, S.; Takahashi, W., Approximating solutions of maximal monotone operators in Hilbert spaces, J. Approx. Theory, 106, 2, 226-240 (2000) · Zbl 0992.47022
[22] Khatibzadeh, H.; Ranjbar, S., On the strong convergence of Halpern type proximal point algorithm, J. Optim. Theory Appl., 158, 2, 385-396 (2013) · Zbl 1272.90112
[23] Kirk, W. A., Krasnoselskii’s iteration process in hyperbolic space, Numer. Funct. Anal. Optim., 4, 4, 371-381 (1982) · Zbl 0505.47046
[24] Kirk, W. A., Geodesic geometry and fixed point theory, (Seminar of Mathematical Analysis. Seminar of Mathematical Analysis, Malaga/Seville, 2002/2003, vol. 64 (2003)), 195-225 · Zbl 1058.53061
[25] Kohlenbach, U., Some computational aspects of metric fixed point theory, Nonlinear Anal., 61, 823-837 (2005) · Zbl 1086.47021
[26] Kohlenbach, U., Some logical metatheorems with applications in functional analysis, Trans. Am. Math. Soc., 357, 1, 89-128 (2005) · Zbl 1079.03046
[27] Kohlenbach, U., Applied Proof Theory: Proof Interpretations and Their Use in Mathematics, Springer Monographs in Mathematics (2008), Springer-Verlag Berlin Heidelberg · Zbl 1158.03002
[28] Kohlenbach, U., On quantitative versions of theorems due to F.E. Browder and R. Wittmann, Adv. Math., 226, 3, 2764-2795 (2011) · Zbl 1223.03041
[29] Kohlenbach, U., Quantitative analysis of a Halpern-type proximal point algorithm for accretive operators in Banach spaces, J. Nonlinear Convex Anal., 21, 9, 2125-2138 (2020) · Zbl 1487.47108
[30] Kohlenbach, U.; Koutsoukou-Argyraki, A., Rates of convergence and metastability for abstract Cauchy problems generated by accretive operators, J. Math. Anal. Appl., 423, 1089-1112 (2015) · Zbl 1300.47070
[31] Kohlenbach, U.; Leuştean, L., A quantitative mean ergodic theorem for uniformly convex Banach spaces, Ergod. Theory Dyn. Syst., 29, 1907-1915 (2009) · Zbl 1190.37005
[32] Kohlenbach, U.; Leuştean, L., Effective metastability of Halpern iterates in CAT(0) spaces, Adv. Math.. Adv. Math., Adv. Math., 250, 650-651 (2014), Addendum in: · Zbl 1284.47044
[33] Kohlenbach, U.; Leuştean, L., On the computational content of convergence proofs via Banach limits, Philos. Trans. R. Soc. A, 370, 3449-3463 (2012) · Zbl 1329.03094
[34] Kohlenbach, U.; Oliva, P., Proof mining: a systematic way of analysing proofs in mathematics, Proc. Steklov Inst. Math., 242, 136-164 (2003) · Zbl 1079.03045
[35] Kohlenbach, U.; Sipoş, A., The finitary content of sunny nonexpansive retractions, Commun. Contemp. Math., 23, 1, Article 1950093 pp. (2021), 63 pp. · Zbl 07266076
[36] Körnlein, D., Quantitative results for Halpern iterations of nonexpansive mappings, J. Math. Anal. Appl., 428, 2, 1161-1172 (2015) · Zbl 1316.47055
[37] Körnlein, D., Quantitative analysis of iterative algorithms in fixed point theory and convex optimization (2016), TU Darmstadt, PhD Thesis · Zbl 1346.47001
[38] Körnlein, D., Quantitative strong convergence for the hybrid steepest descent method (2016)
[39] Leuştean, L.; Pinto, P., Quantitative results on a Halpern-type proximal point algorithm, Comput. Optim. Appl., 79, 1, 101-125 (2021) · Zbl 07353215
[40] Martinet, B., Régularisation d’inéquations variationnelles par approximations successives, Rev. Fr. Inform. Rech. Oper., 4, 154-158 (1970) · Zbl 0215.21103
[41] Meir, A.; Keeler, E., A theorem on contraction mappings, J. Math. Anal. Appl., 28, 2, 326-329 (1969) · Zbl 0194.44904
[42] Moudafi, A., Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl., 241, 1, 46-55 (2000) · Zbl 0957.47039
[43] Neumann, E., Computational problems in metric fixed point theory and their Weihrauch degrees, Log. Methods Comput. Sci., 11 (2015), 44 pp. · Zbl 1351.03054
[44] Pinto, P., A rate of metastability for the Halpern type proximal point algorithm, Numer. Funct. Anal. Optim., 42, 3, 320-343 (2021) · Zbl 07336647
[45] Rakotch, E., A note on contractive mappings, Proc. Am. Math. Soc., 13, 3, 459-465 (1962) · Zbl 0105.35202
[46] Reich, S., Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl., 75, 1, 287-292 (1980) · Zbl 0437.47047
[47] Reich, S.; Shafrir, I., Nonexpansive iterations in hyperbolic spaces, Nonlinear Anal., 15, 6, 537-558 (1990) · Zbl 0728.47043
[48] Rockafellar, R., Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14, 5, 877-898 (1976) · Zbl 0358.90053
[49] Shioji, N.; Takahashi, W., Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. Am. Math. Soc., 125, 3641-3645 (1997) · Zbl 0888.47034
[50] Suzuki, T., Moudafi’s viscosity approximations with Meir-Keeler contractions, J. Math. Anal. Appl., 325, 1, 342-352 (2007) · Zbl 1111.47059
[51] Suzuki, T., Some notes on Bauschke’s condition, Nonlinear Anal., 67, 7, 2224-2231 (2007) · Zbl 1133.47049
[52] Takahashi, W., A convexity in metric space and nonexpansive mappings, I, (Kodai Mathematical Seminar Reports, vol. 22 (1970)), 142-149 · Zbl 0268.54048
[53] Tao, T., Soft analysis, hard analysis, and the finite convergence principle, (T. Tao, Structure and Randomness: Pages from Year One of a Mathematical Blog (2008), AMS), 298 pp. · Zbl 1245.00024
[54] Wittmann, R., Approximation of fixed points of nonexpansive mappings, Arch. Math., 58, 5, 486-491 (1992) · Zbl 0797.47036
[55] Xu, H.-K., Another control condition in an iterative method for nonexpansive mappings, Bull. Aust. Math. Soc., 65, 1, 109-113 (2002) · Zbl 1030.47036
[56] Xu, H.-K., Iterative algorithms for nonlinear operators, J. Lond. Math. Soc., 66, 1, 240-256 (2002) · Zbl 1013.47032
[57] Xu, H.-K., Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl., 298, 1, 279-291 (2004) · Zbl 1061.47060
[58] Xu, H.-K.; Altwaijry, N.; Chebbi, S., Strong convergence of Mann’s iteration process in Banach spaces, Mathematics, 8, 6, 954 (2020)
[59] Yamada, I., The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings, Stud. Comput. Math., 8, 473-504 (2001) · Zbl 1013.49005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.