×

Adaptive event-triggered sliding mode control for platooning of heterogeneous vehicular systems and its \(\mathcal{L}_2\) input-to-output string stability. (English) Zbl 07916164

Summary: Platooning of vehicular systems is an effective technique for enhancing transportation efficiency. As the scale of the vehicular platoon systems increases, disturbances on individual vehicles can affect the whole platoon through their connections. Besides, excessive vehicles impose a significant burden on communication devices. Towards this end, this work investigates the distributed platoon control problem of connected vehicular systems subject to disturbances by employing a resource-efficient communication mechanism. The proposed adaptive event-triggered mechanism (AETM) avoids periodic data transmission and reduces communication burden among vehicles. Besides, the AETM regulates the triggered threshold dynamically via the perception of spacing errors and avoids continuous inter-vehicle communication. Next, an AETM-based finite-time extended state observer (AFESO) is designed to alleviate the impact of the external disturbances. Then, an adaptive event-triggered distributed sliding mode control (DSMC) framework is developed to guarantee platoon stability. It is approved that, under the proposed control method, the closed-loop system subject to the disturbances satisfies the \(\mathcal{L}_2\) input-to-output string stability (\(\mathcal{L}_2\)-IOSS). The salient feature of the AETM-based DSMC is that the AETM can effectively reduce communication consumption, while DSMC mitigates the performance degradation caused by triggering errors and disturbances. Finally, numerical simulations demonstrate the effectiveness of the proposed algorithm.

MSC:

93C40 Adaptive control/observation systems
93C65 Discrete event control/observation systems
93B12 Variable structure systems
93D25 Input-output approaches in control theory
93B53 Observers
Full Text: DOI

References:

[1] Wen, S.; Guo, G.; Chen, B.; Gao, X., Cooperative adaptive cruise control of vehicles using a resource-efficient communication mechanism, IEEE Trans. Intell. Veh., 4, 1, 127-140, 2019
[2] Fiengo, G.; Lui, D. G.; Petrillo, A.; Santini, S.; Tufo, M., Distributed robust pid control for leader tracking in uncertain connected ground vehicles with V2V communication delay, IEEE/ASME Trans. Mechatron., 24, 3, 1153-1165, 2019
[3] Dasgupta, S.; Raghuraman, V.; Choudhury, A.; Teja, T. N.; Dauwels, J., Merging and splitting maneuver of platoons by means of a novel pid controller, (2017 IEEE Symposium Series on Computational Intelligence (SSCI), 2017), 1-8
[4] Tiganasu, A.; Lazar, C.; Caruntu, C. F., Cyber physical systems - oriented design of cooperative control for vehicle platooning, (International Conference on Control Systems & Computer Science, 2017), 21-27
[5] Yan, C.; Gong, B.; Wei, Y.; Gao, Y., Deep multi-view enhancement hashing for image retrieval, IEEE Trans. Pattern Anal. Mach. Intell., 43, 4, 1445-1451, 2020
[6] Yan, C.; Li, Z.; Zhang, Y.; Liu, Y.; Ji, X.; Zhang, Y., Depth image denoising using nuclear norm and learning graph model, ACM Trans. Multimed. Comput. Commun. Appl., 16, 4, 1-17, 2020
[7] Ma, Y.; Li, Z.; Malekian, R.; Zhang, R.; Song, X.; Sotelo, M. A., Hierarchical fuzzy logic-based variable structure control for vehicles platooning, IEEE Trans. Intell. Transp. Syst., 20, 4, 1329-1340, 2019
[8] Lin, Y.; Nguyen, H. L.T., Adaptive neuro-fuzzy predictor-based control for cooperative adaptive cruise control system, IEEE Trans. Intell. Transp. Syst., 21, 3, 1054-1063, 2020
[9] Yan, C.; Hao, Y.; Li, L.; Yin, J.; Liu, A.; Mao, Z.; Chen, Z.; Gao, X., Task-adaptive attention for image captioning, IEEE Trans. Circuits Syst. Video Technol., 32, 1, 43-51, 2021
[10] Yan, C.; Teng, T.; Liu, Y.; Zhang, Y.; Wang, H.; Ji, X., Precise no-reference image quality evaluation based on distortion identification, ACM Trans. Multimed. Comput. Commun. Appl., 17, 3 s, 1-21, 2021
[11] Yan, C.; Meng, L.; Li, L.; Zhang, J.; Wang, Z.; Yin, J.; Zhang, J.; Sun, Y.; Zheng, B., Age-invariant face recognition by multi-feature fusion and decomposition with self-attention, ACM Trans. Multimed. Comput. Commun. Appl., 18, 1 s, 1-18, 2022
[12] Ibrahim, A.; Goswami, D.; Li, H.; Martín Soroa, I. naki; Basten, T., Multi-layer multi-rate model predictive control for vehicle platooning under IEEE 802.11p, Transp. Res., Part C, Emerg. Technol., 124, Article 102905 pp., 2021
[13] Yu, K.; Yang, H.; Tan, X.; Kawabe, T.; Guo, Y.; Liang, Q.; Fu, Z.; Zheng, Z., Model predictive control for hybrid electric vehicle platooning using slope information, IEEE Trans. Intell. Transp. Syst., 17, 7, 1894-1909, 2016
[14] Chenggang, Y.; Yaoqi, S.; Hao, Z.; Chenwei, Z.; Zunjie, Z.; Bolun, Z.; Xiaofei, Z., Review of omnimedia content quality evaluation, J. Signal Process., 38, 6, 1111-1143, 2022
[15] Guo, X.; Wang, J.; Liao, F.; Teo, R. S.H., Distributed adaptive integrated-sliding-mode controller synthesis for string stability of vehicle platoons, IEEE Trans. Intell. Transp. Syst., 17, 9, 2419-2429, 2016
[16] Wang, J.; Luo, X.; Wang, L.; Zuo, Z.; Guan, X., Integral sliding mode control using a disturbance observer for vehicle platoons, IEEE Trans. Ind. Electron., 67, 8, 6639-6648, 2020
[17] Chang, R.; Bai, Z.-Z.; Zhang, B.-Y.; Sun, C.-Y., Adaptive finite-time prescribed performance tracking control for unknown nonlinear systems subject to full-state constraints and input saturation, Int. J. Robust Nonlinear Control, 32, 17, 9347-9362, 2022 · Zbl 1529.93049
[18] Song, X.; Wu, C.; Stojanovic, V.; Song, S., 1 bit encoding-decoding-based event-triggered fixed-time adaptive control for unmanned surface vehicle with guaranteed tracking performance, Control Eng. Pract., 135, Article 105513 pp., 2023
[19] Dolk, V. S.; Ploeg, J.; Heemels, W. P.M. H., Event-triggered control for string-stable vehicle platooning, IEEE Trans. Intell. Transp. Syst., 18, 12, 3486-3500, 2017
[20] Wang, J.; Ma, F.; Yang, Y.; Nie, J.; Aksun-Guvenc, B.; Guvenc, L., Adaptive event-triggered platoon control under unreliable communication links, IEEE Trans. Intell. Transp. Syst., 23, 3, 1924-1935, 2022
[21] Chang, R.; Hou, T.-T.; Bai, Z.-Z.; Sun, C.-Y., Event-triggered adaptive tracking control for nonlinear systems with input saturation and unknown control directions, Int. J. Robust Nonlinear Control, 34, 6, 3891-3911, 2024 · Zbl 1533.93451
[22] Song, X.; Wu, N.; Song, S.; Stojanovic, V., Switching-like event-triggered state estimation for reaction-diffusion neural networks against dos attacks, Neural Process. Lett., 55, 7, 8997-9018, 2023
[23] Song, X.; Wu, N.; Song, S.; Zhang, Y.; Stojanovic, V., Bipartite synchronization for cooperative-competitive neural networks with reaction-diffusion terms via dual event-triggered mechanism, Neurocomputing, 550, Article 126498 pp., 2023
[24] Zhang, H.; Liu, J.; Wang, Z.; Yan, H.; Zhang, C., Distributed adaptive event-triggered control and stability analysis for vehicular platoon, IEEE Trans. Intell. Transp. Syst., 22, 3, 1627-1638, 2021
[25] Wu, G.; Chen, G.; Zhang, H.; Huang, C., Fully distributed event-triggered vehicular platooning with actuator uncertainties, IEEE Trans. Veh. Technol., 70, 7, 6601-6612, 2021
[26] Guo, X. G.; Wang, J. L.; Liao, F.; Teo, R. S.H., CNN-based distributed adaptive control for vehicle-following platoon with input saturation, IEEE Trans. Intell. Transp. Syst., 19, 10, 3121-3132, 2018
[27] Guo, X.; Wang, J.; Liao, F., Neuroadaptive quantized PID sliding-mode control for heterogeneous vehicular platoon with unknown actuator deadzone, Int. J. Robust Nonlinear Control, 29, 1, 188-208, 2019 · Zbl 1411.93038
[28] Zheng, X.; Luo, X.; Wang, J.; Yan, J.; Guan, X., Acceleration-feedback-based finite-time platoon control for interconnected vehicular system, Comput. Electr. Eng., 101, Article 108054 pp., 2022
[29] Wang, J.; Luo, X.; Yan, J.; Guan, X., Distributed integrated sliding mode control for vehicle platoons based on disturbance observer and multi power reaching law, IEEE Trans. Intell. Transp. Syst., 23, 4, 3366-3376, 2022
[30] Zhang, Q.; Song, X.; Song, S.; Stojanovic, V., Finite-time sliding mode control for singularly perturbed pde systems, J. Franklin Inst., 360, 2, 841-861, 2023 · Zbl 1506.93082
[31] Behera, A. K.; Bandyopadhyay, B., Event based robust stabilization of linear systems, (IECON 2014 - 40th Annual Conference of the IEEE, 2014, Industrial Electronics Society), 133-138
[32] Ferrara, A.; Incremona, G. P.; Magni, L., Model-based event-triggered robust mpc/ism, (2014 European Control Conference (ECC), 2014), 2931-2936
[33] Song, J.; Wang, Y.-K.; Niu, Y.; Lam, H.-K.; He, S.; Liu, H., Periodic event-triggered terminal sliding mode speed control for networked pmsm system: a ga-optimized extended state observer approach, IEEE/ASME Trans. Mechatron., 27, 5, 4153-4164, 2022
[34] Yao, D.; Li, H.; Lu, R.; Shi, Y., Distributed sliding-mode tracking control of second-order nonlinear multiagent systems: an event-triggered approach, IEEE Trans. Cybern., 50, 9, 3892-3902, 2020
[35] Ploeg, J.; Shukla, D. P.; van de Wouw, N.; Nijmeijer, H., Controller synthesis for string stability of vehicle platoons, IEEE Trans. Intell. Transp. Syst., 15, 2, 854-865, 2014
[36] Li, K.; Wang, J.; Zheng, Y., Cooperative formation of autonomous vehicles in mixed traffic flow: beyond platooning, IEEE Trans. Intell. Transp. Syst., 23, 9, 15951-15966, 2022
[37] Naus, G. J.L.; Vugts, R. P.A.; Ploeg, J.; van de Molengraft, M. J.G.; Steinbuch, M., String-stable cacc design and experimental validation: a frequency-domain approach, IEEE Trans. Veh. Technol., 59, 9, 4268-4279, 2010
[38] Shaw, E.; Hedrick, J. K., String stability analysis for heterogeneous vehicle strings, (2007 American Control Conference, 2007, IEEE), 3118-3125
[39] Eskandarian, A.; Wu, C.; Sun, C., Research advances and challenges of autonomous and connected ground vehicles, IEEE Trans. Intell. Transp. Syst., 22, 2, 683-711, 2021
[40] Xu, L.; Zhuang, W.; Yin, G.; Bian, C.; Wu, H., Modeling and robust control of heterogeneous vehicle platoons on curved roads subject to disturbances and delays, IEEE Trans. Veh. Technol., 68, 12, 11551-11564, 2019
[41] Rajamani, R., Vehicle Dynamics and Control, 2011, Springer Science & Business Media
[42] Guo, G.; Li, P.; Hao, L. Y., A new quadratic spacing policy and adaptive fault-tolerant platooning with actuator saturation, IEEE Trans. Intell. Transp. Syst., 23, 2, 1200-1212, 2020
[43] Rajamani, R.; Tan, H.-S.; Law, B. K.; Zhang, W.-B., Demonstration of integrated longitudinal and lateral control for the operation of automated vehicles in platoons, IEEE Transactions on Control Systems Technology, 8, 4, 695-708, 2000
[44] Li, S. E.; Qin, X.; Zheng, Y.; Wang, J.; Li, K.; Zhang, H., Distributed platoon control under topologies with complex eigenvalues: stability analysis and controller synthesis, IEEE Transactions on Control Systems Technology, 27, 1, 206-220, 2019
[45] Li, Z.; Hu, B.; Yang, Z., Co-design of distributed event-triggered controller for string stability of vehicle platooning under periodic jamming attacks, IEEE Trans. Veh. Technol., 70, 12, 13115-13128, 2021
[46] Feng, S.; Zhang, Y.; Li, S. E.; Cao, Z.; Liu, H. X.; Li, L., String stability for vehicular platoon control: definitions and analysis methods, Annu. Rev. Control, 47, 81-97, 2019
[47] Guo, B. Z.; Zhao, Z. L., On the convergence of an extended state observer for nonlinear systems with uncertainty, Syst. Control Lett., 60, 6, 420-430, 2011 · Zbl 1225.93056
[48] Bhat, S. P.; Bernstein, D. S., Geometric homogeneity with applications to finite-time stability, Math. Control Signals Syst., 17, 2, 101-127, 2005 · Zbl 1110.34033
[49] Rosier, L., Homogeneous Lyapunov function for homogeneous continuous vector field, Syst. Control Lett., 19, 6, 467-473, 1992 · Zbl 0762.34032
[50] Hong, Y.; Jiang, Z.; Feng, G., Finite-time input-to-state stability and related Lyapunov analysis, (The 26th Chinese Control Conference, 2007), 652-656
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.