×

The central limit theorem for empirical processes on V-Č classes: A majorizing measure approach. (English) Zbl 0833.60036

Author’s summary: K. S. Alexander [Ann. Probab. 15, 178-203 (1987; Zbl 0624.60032)] gave necessary and sufficient conditions for the central limit theorem for empirical processes on Vapnik-Červonenkis classes of functions. We present an alternative version of his result using Talagrand’s analytic characterization of pre-Gaussianness (the majorizing measure condition). Our proof can be directly extended to give the corresponding result in the non-Gaussian stable case.

MSC:

60F17 Functional limit theorems; invariance principles
60B12 Limit theorems for vector-valued random variables (infinite-dimensional case)

Citations:

Zbl 0624.60032
Full Text: DOI

References:

[1] Alexander, K. S. (1987). The central limit theorem for empirical processes on Vapnik-Červonenkis classes of functions.Ann. Prob. 15, 178–203. · Zbl 0624.60032 · doi:10.1214/aop/1176992263
[2] Alexander, K. S. and Pyke, R. (1986). A uniform central limit theorem for set-indexed partial sum processes with finite variance.Ann. Prob. 14, 582–597. · Zbl 0595.60027 · doi:10.1214/aop/1176992532
[3] Andersen, N. T. (1985). The calculus of non-measurable functions and sets.Tech. Rep. 36, Aarhus University.
[4] Andersen, N. T., Giné, E., Ossiander, M. and Zinn, J. (1988). The central limit theorem and the law of iterated logarithm for empirical processes under local conditions.Probab. Theory Related Fields 77, 271–305. · Zbl 0618.60022 · doi:10.1007/BF00334041
[5] Andersen, N. T., Giné, E. and Zinn, J. (1988). The central limit theorem for empirical processes under local conditions: the case of Radon infinitely divisible limits without Gaussian component.Trans. Amer. Math. Soc. 308, 603–635. · Zbl 0661.60052 · doi:10.1090/S0002-9947-1988-0930076-3
[6] Bass, R. F. (1985). Law of the iterated logarithm for set-indexed partial-sum processes with finite variance.Z. Wahrscheinlichkeitstheory verw. Geb. 70, 591–608. · Zbl 0575.60034 · doi:10.1007/BF00531869
[7] Bennett, G. W. (1962). Probability inequalities for sums of bounded random variables.J. Amer. Statist. Assoc. 57, 33–45. · Zbl 0104.11905 · doi:10.2307/2282438
[8] Chang, L. C. (1964). On the ratio of the empirical distribution to the theoretical distribution function.Sel. Transl. Math. Statist. Prob. 4, 17–38. · Zbl 0202.48801
[9] Dudley, R. M. (1967). The sizes of compact subsets of Hilbert spaces and continuity of Gaussian processes.J. Func. Anal. 1, 290–330. · Zbl 0188.20502 · doi:10.1016/0022-1236(67)90017-1
[10] Dudley, R. M. (1973). Sample functions of the Gaussian process.Ann. Prob. 1, 66–103. · Zbl 0261.60033 · doi:10.1214/aop/1176997026
[11] Dudley, R. M. (1984). A course on empirical processes.Lect. Notes in Math. 1097, 1–142. Berlin: Springer. · Zbl 0554.60029
[12] Fernique, X. (1974). Regularité des trajectories des fonctions aléatoires gaussienes.Lect. Notes in Math. 480, 1–96, Berlin: Springer.
[13] Giné, E. and Zinn, J. (1984). Some limit theorems for empirical processes.Ann. Prob. 12, 929–989. · Zbl 0553.60037 · doi:10.1214/aop/1176993138
[14] Giné, E. and Zinn, J. (1986). Lectures on the central limit theorem for empirical processes.Lect. Notes in Math. 1221, 50–113. · Zbl 0605.60026 · doi:10.1007/BFb0099111
[15] Hoeffding, W. (1963). Probability inequalites for sums of bounded random variables.J. Amer. Statist. Assoc. 58, 13–30 · Zbl 0127.10602 · doi:10.2307/2282952
[16] Hoffmann-Jørgensen, J. (1984). Stochastic Processes on Polish Spaces.Tech. Rep., Aarhus University. · Zbl 0919.60003
[17] Kolmogorov, A. N. and Tikhomirov V. M. (1959). entropy and capacity of sets in function spaces.Ann. Math. Statist. 17 (1961), 277–364. · Zbl 0133.06703
[18] Ossiander, M. (1987). A central limit theorem under metric entropy withL 2-bracketing.Ann. Prob. 15, 897–919. · Zbl 0665.60036 · doi:10.1214/aop/1176992072
[19] Pollard, D. (1984).Convergence of Stochastic Processes, Berlin: Springer. · Zbl 0544.60045
[20] Preston, C. (1972). Continuity properties of some Gaussian processes.Ann. Math. Statist. 43, 285–292. · Zbl 0268.60044 · doi:10.1214/aoms/1177692721
[21] Talagrand, M. (1987). Regularity of Gaussian processes.Acta Math. 159, 99–149. · Zbl 0712.60044 · doi:10.1007/BF02392556
[22] Vapnik, V. N. and Červonenkis, A. Ya. (1971). On the uniform convergence of relative frequencies of events to their probabilities.Theor. Prob. Applic. 16, 264–280. · Zbl 0247.60005 · doi:10.1137/1116025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.