×

Graphs identified by logics with counting. (English) Zbl 1465.68101

Italiano, F. (ed.) et al., Mathematical foundations of computer science 2015. 40th international symposium, MFCS 2015, Milan, Italy, August 24–28, 2015. Proceedings. Part I. Berlin: Springer. Lect. Notes Comput. Sci. 9234, 319-330 (2015).
Summary: We classify graphs and, more generally, finite relational structures that are identified by \({C^{2}}\), that is, two-variable first-order logic with counting. Using this classification, we show that it can be decided in almost linear time whether a structure is identified by \({C^{2}}\). Our classification implies that for every graph identified by this logic, all vertex-colored versions of it are also identified. A similar statement is true for finite relational structures.{ }We provide constructions that solve the inversion problem for finite structures in linear time. This problem has previously been shown to be polynomial time solvable by Martin Otto. For graphs, we conclude that every \({C^{2}}\)-equivalence class contains a graph whose orbits are exactly the classes of the \({C^{2}}\)-partition of its vertex set and which has a single automorphism witnessing this fact.{ }For general \(k\), we show that such statements are not true by providing examples of graphs of size linear in \(k\) which are identified by \({C^{3}}\) but for which the orbit partition is strictly finer than the \(C^k\)-partition. We also provide identified graphs which have vertex-colored versions that are not identified by \(C^k\).
For the entire collection see [Zbl 1318.68023].

MSC:

68Q19 Descriptive complexity and finite models
03B70 Logic in computer science
05C15 Coloring of graphs and hypergraphs
05C75 Structural characterization of families of graphs
08A02 Relational systems, laws of composition

References:

[1] Arvind, V., Köbler, J., Rattan, G., Verbitsky, O.: On the power of color refinement. In: FCT 2015, (to appear 2015) · Zbl 1436.05101
[2] Atserias, A.; Maneva, EN, Sherali-adams relaxations and indistinguishability in counting logics, SIAM J. Comput., 42, 1, 112-137 (2013) · Zbl 1286.68175 · doi:10.1137/120867834
[3] Babai, L.; Erdös, P.; Selkow, SM, Random graph isomorphism, SIAM J. Comput., 9, 3, 628-635 (1980) · Zbl 0454.05038 · doi:10.1137/0209047
[4] Babai, L., Kucera, L.: Canonical labelling of graphs in linear average time. In: FOCS 1979, pp. 39-46. IEEE Computer Society (1979)
[5] Berkholz, C.; Bonsma, P.; Grohe, M.; Bodlaender, HL; Italiano, GF, Tight lower and upper bounds for the complexity of canonical colour refinement, Algorithms - ESA 2013, 145-156 (2013), Heidelberg: Springer, Heidelberg · Zbl 1362.68097 · doi:10.1007/978-3-642-40450-4_13
[6] Cai, J.; Fürer, M.; Immerman, N., An optimal lower bound on the number of variables for graph identifications, Combinatorica, 12, 4, 389-410 (1992) · Zbl 0785.68043 · doi:10.1007/BF01305232
[7] Chang, L-C, The uniqueness and nonuniqueness of the triangular association scheme, Sci. Record., 3, 604-613 (1959) · Zbl 0089.15102
[8] Dawar, A.; Holm, B.; Czumaj, A.; Mehlhorn, K.; Pitts, A.; Wattenhofer, R., Pebble games with algebraic rules, Automata, Languages, and Programming, 251-262 (2012), Heidelberg: Springer, Heidelberg · Zbl 1367.68105 · doi:10.1007/978-3-642-31585-5_25
[9] Grädel, E.; Otto, M., On logics with two variables, Theor. Comput. Sci., 224, 1-2, 73-113 (1999) · Zbl 0948.03023 · doi:10.1016/S0304-3975(98)00308-9
[10] Grädel, E., Otto, M., Rosen, E.: Two-variable logic with counting is decidable. In: LICS 1997, pp. 306-317. IEEE Computer Society (1997)
[11] Grohe, M., Finite variable logics in descriptive complexity theory, Bull. Symbolic Log., 4, 4, 345-398 (1998) · Zbl 0940.03040 · doi:10.2307/420954
[12] Grohe, M., Otto, M.: Pebble games and linear equations. In: Cégielski, P., Durand, A. (eds.) CSL 2012, of LIPIcs, vol. 16, pp. 289-304 (2012) · Zbl 1252.03084
[13] Hella, L., Logical hierarchies in PTIME, Inf. Comput., 129, 1, 1-19 (1996) · Zbl 0864.68095 · doi:10.1006/inco.1996.0070
[14] Hoffman, AJ, On the uniqueness of the triangular association scheme, Ann. Math. Statist., 31, 2, 492-497 (1960) · Zbl 0091.31504 · doi:10.1214/aoms/1177705914
[15] Kiefer, S., Schweitzer, P., Selman, E.: Graphs identified by logics with counting. CoRR, abs/1503.08792 (2015). full version of the paper · Zbl 1465.68101
[16] Kopczynski, E., Tan, T.: Regular graphs and the spectra of two-variable logic with counting. CoRR, abs/1304.0829 (2013) · Zbl 1354.03039
[17] Krebs, A., Verbitsky, O.: Universal covers, color refinement, and two-variable logic with counting quantifiers: Lower bounds for the depth. CoRR, abs/1407.3175 (2014) · Zbl 1395.05134
[18] Kucera, L.: Canonical labeling of regular graphs in linear average time. In: FOCS 1987, pp. 271-279. IEEE Computer Society (1987)
[19] Lucas, E.: Récréations mathématiques. 2ième éd., nouveau tirage. Librairie Scientifique et Technique Albert Blanchard, Paris (1960) · Zbl 0088.00101
[20] McKay, BD; Piperno, A., Practical graph isomorphism, II, J. Symb. Comput., 60, 94-112 (2014) · Zbl 1394.05079 · doi:10.1016/j.jsc.2013.09.003
[21] Otto, M., Canonization for two variables and puzzles on the square, Ann. Pure Appl. Logic, 85, 3, 243-282 (1997) · Zbl 0874.03039 · doi:10.1016/S0168-0072(96)00047-4
[22] Pratt-Hartmann, I., Complexity of the two-variable fragment with counting quantifiers, J. Log. Lang. Inf., 14, 3, 369-395 (2005) · Zbl 1082.03007 · doi:10.1007/s10849-005-5791-1
[23] West, DB, Introduction to Graph Theory (2000), Upper Saddle River: Pearson, Upper Saddle River
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.