×

Exact and asymptotic goodness-of-fit tests based on the maximum and its location of the empirical process. (English) Zbl 07692853

Summary: The supremum of the standardized empirical process is a promising statistic for testing whether the distribution function \(F\) of i.i.d. real random variables is either equal to a given distribution function \(F_0\) (hypothesis) or \(F\geq F_0\) (one-sided alternative). Since (The Annals of Statistics 7 (1979) 108-115) it is well-known that an affine-linear transformation of the suprema converge in distribution to the Gumbel law as the sample size tends to infinity. This enables the construction of an asymptotic level-\(\alpha\) test. However, the rate of convergence is extremely slow. As a consequence the probability of the type I error is much larger than \(\alpha\) even for sample sizes beyond 10.000. Now, the standardization consists of the weight-function \(1/\sqrt{F_0 (x)(1-F_0 (x))}\). Substituting the weight-function by a suitable random constant leads to a new test-statistic, for which we can derive the exact distribution (and the limit distribution) under the hypothesis. A comparison via a Monte-Carlo simulation shows that the new test is uniformly better than the Smirnov-test and an appropriately modified test due to (The Annals of Statistics 11 (1983) 933-946). Our methodology also works for the two-sided alternative \(F\neq F_0\).

MSC:

62-XX Statistics
60-XX Probability theory and stochastic processes

References:

[1] Anderson, T. W. and Darling, D. A. (1952). Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes. The Annals of Mathematical Statistics 23, 193-212. · Zbl 0048.11301
[2] Billingsley, P. (1999). Convergence of Probability Measures, 2nd ed. New York: Wiley. · Zbl 0944.60003
[3] Birnbaum, Z. W. and Pyke, R. (1958). On some distributions related to the statistic \[{D_n^+}\]. The Annals of Mathematical Statistics 29, 179-187. · Zbl 0089.14803
[4] Cahill, N. D., D’Errico, J. R., Narayan, D. A. and Narayan, J. Y. (2002). Fibonacci determinants. The College Mathematics Journal 33, 221-225. · Zbl 1046.11007 · doi:10.1098/rspa.1945.0011
[5] Chang, L. C. (1955). On the ratio of the empirical distribution to the theoretical distribution function. Acta Mathematica Sinica 5, 347-368. (English translation in Selected Transl. Math. Statist. Prob., 4 (1964), 17-38.). · Zbl 0202.48801 · doi:10.1051/ps:2005014
[6] Chibisov, M. D. (1966). Some theorems on the limiting behavior of the empirical distribution function. Selected Translations in Mathematical Statistics and Probability 6, 147-156. · Zbl 0192.26204
[7] Csörgő, M. and Horváth, L. (1993). Weighted Approximations in Probability and Statistics. Wiley, Chichester, England. · Zbl 0770.60038 · doi:10.1016/j.spl.2017.10.008
[8] Daniels, H. E. (1945). The statistical theory of the strength of bundles of threads. Proceedings of the Royal Society of London Series A 183, 405-435. · Zbl 0063.01035
[9] Ferger, D. (2005). On the minimizing point of the incorrectly centered empirical process and its limit distribution in nonregular experiments. ESAIM Probabilités Et Statistique 9, 307-322. · Zbl 1136.60315
[10] Ferger, D. (2015). Arginf-sets of multivariate cadlag processes and their convergence in hyperspace topologies. Theory of Stochastic Processes 20, 13-41. · Zbl 1363.60050 · doi:10.1007/bf01831720
[11] Ferger, D. (2018). On the supremum of a Brownian bridge standardized by its maximizing point with applications to statistics. Statistics & Probability Letters 134, 63-69. · Zbl 1428.60116
[12] Gutjahr, M. (1988). Zur Berechnung geschlossener Ausdrücke für die Verteilung von Statistiken, die auf einer empirischen Verteilungsfunktion basieren. München: Phd-thesis, Ludwig-Maximilians-University. · Zbl 0729.62011 · doi:10.1214/aoms/1177692700
[13] Ishii, G. (1959). On the exact probabilities of Rényi’s tests. Ann. Inst. Statist. Math. Tokyo 11, 17-24. · Zbl 0091.15503 · doi:10.1007/BF02127580
[14] Jaeschke, D. (1979). The asymptotic distribution of the supremum of the standardized empirical distribution function on subintervals. The Annals of Statistics 7, 108-115. · Zbl 0398.62013
[15] Mason, D. and Schuenemeyer, J. H. (1983). A modified Kolmogorov-Smirnov test sensitive to tail alternatives. The Annals of Statistics 11, 933-946. · Zbl 0547.62028
[16] Noé, M. (1972). The calculations of distributions of two-sided Kolmogorov-Smirnov type statistics. The Annals of Mathematical Statistics 43, 58-64. · Zbl 0238.62047
[17] Rényi, A. (1953). On the theory of order statistics. Acta Scientiarum Mathematica Hungaricae 4, 191-227. · Zbl 0052.14202 · doi:10.1214/aoms/1177693490
[18] Rényi, A. (1962). Wahrscheinlichkeitsrechnung. Mit einem Anhang über Informationstheorie. Berlin: VEB Deutscher Verlag der Wissenschaften. · Zbl 0102.34403
[19] Shorack, G. R. and Wellner, J. A. (1986). Empirical Processes with Applications to Statistics. New York: Wiley. · Zbl 1170.62365
[20] Smirnov, N. V. (1944). Approximate laws of distribution of random variables from empirical data. Uspehi Matematičeskih Nauk 10, 179-206. (in Russian). · Zbl 0063.07087
[21] Steck, G. P. (1971). Rectangle probabilities for uniform order statistics and the probability that the empirical distribution function lies between two distribution functions. The Annals of Mathematical Statistics 42, 1-11. · Zbl 0221.62013
[22] Takács, L. (1967). Combinatorial Methods in the Theory of Stochastic Processes. New York: Wiley · Zbl 0162.21303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.