×

\(q\)-symmetries in DNLS-AL chains and exact solutions of quantum dimers. (English) Zbl 1229.82067

Summary: Dynamical symmetries of Hamiltonians quantized models of discrete nonlinear Schrödinger chain (DNLS) and of Ablowitz-Ladik chain (AL) are studied. It is shown that for n-sites the dynamical algebra of DNLS Hamilton operator is given by the \(su(n)\) algebra, while the respective symmetry for the AL case is the quantum algebra \(su_{q}(n)\). The q-deformation of the dynamical symmetry in the AL model is due to the non-canonical oscillator-like structure of the raising and lowering operators at each site. Invariants of motions are found in terms of Casimir central elements of \(su(n)\) and \(su_{q}(n)\) algebra generators, for the DNLS and QAL cases respectively. Utilizing the representation theory of the symmetry algebras we specialize to the n=2 quantum dimer case and formulate the eigenvalue problem of each dimer as a nonlinear (q)-spin model. Analytic investigations of the ensuing three-term nonlinear recurrence relations are carried out and the respective orthonormal and complete eigenvector bases are determined. The quantum manifestation of the classical self-trapping in the QDNLS-dimer and its absence in the QAL-dimer, is analysed by studying the asymptotic attraction and repulsion respectively, of the energy levels versus the strength of nonlinearity. Our treatment predicts for the QDNLS-dimer, a phase-transition like behaviour in the rate of change of the logarithm of eigenenergy differences, for values of the nonlinearity parameter near the classical bifurcation point.

MSC:

82B23 Exactly solvable models; Bethe ansatz
17B37 Quantum groups (quantized enveloping algebras) and related deformations
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics

References:

[1] DOI: 10.1103/PhysRevB.34.4959 · doi:10.1103/PhysRevB.34.4959
[2] Eilbeck J. C., Physica 16 pp 318– (1985)
[3] DOI: 10.1088/0951-7715/3/2/004 · Zbl 0711.34047 · doi:10.1088/0951-7715/3/2/004
[4] DOI: 10.1002/sapm1976553213 · Zbl 0338.35002 · doi:10.1002/sapm1976553213
[5] Enol’skii V. Z., Physica 59 pp 1– (1992)
[6] DOI: 10.1063/1.525994 · Zbl 0554.35118 · doi:10.1063/1.525994
[7] MacFarlane A. J., J. Phys. 22 pp 4581– (1989)
[8] DOI: 10.1103/PhysRevA.46.6856 · doi:10.1103/PhysRevA.46.6856
[9] Ellinas D., Phys. Rev. 51 pp 423– (1995) · doi:10.1103/PhysRevA.51.4230
[10] DOI: 10.1007/BF01018504 · Zbl 0735.17022 · doi:10.1007/BF01018504
[11] DOI: 10.1007/BF02096497 · Zbl 0701.17008 · doi:10.1007/BF02096497
[12] DOI: 10.1088/0305-4470/24/5/009 · doi:10.1088/0305-4470/24/5/009
[13] DOI: 10.1063/1.529319 · Zbl 0738.17007 · doi:10.1063/1.529319
[14] DOI: 10.1088/0305-4470/24/19/002 · Zbl 0754.17010 · doi:10.1088/0305-4470/24/19/002
[15] DOI: 10.1103/PhysRevLett.72.1890 · doi:10.1103/PhysRevLett.72.1890
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.