×

Jordan-Schwinger-type realizations of three-dimensional polynomial algebras. (English) Zbl 1083.81532

Summary: A three-dimensional polynomial algebra of order \(m\) is defined by the commutation relations \([P_0,P_{\pm}] = \pm P_{\pm},\;[P_+,P_-] = \phi^{(m)}(P_0)\) where \(\phi^{(m)} (P_0)\) is an \(m\)th order polynomial in \(P_0\) with the coefficients being constants or central elements of the algebra. It is shown that two given mutually commuting polynomial algebras of orders \(l\) and \(m\) can be combined to give two distinct \((l+m+1)\)th order polynomial algebras. This procedure follows from a generalization of the well-known Jordan–Schwinger method of construction of \(\text{su}(2)\) and \(\text{su}(1,1)\) algebras from two mutually commuting boson algebras.

MSC:

81R05 Finite-dimensional groups and algebras motivated by physics and their representations

References:

[1] DOI: 10.1088/0305-4470/12/3/006 · Zbl 0418.70016 · doi:10.1088/0305-4470/12/3/006
[2] DOI: 10.1088/0305-4470/8/10/018 · doi:10.1088/0305-4470/8/10/018
[3] DOI: 10.1007/BF01077848 · Zbl 0513.58028 · doi:10.1007/BF01077848
[4] DOI: 10.1016/0370-2693(90)90845-W · doi:10.1016/0370-2693(90)90845-W
[5] DOI: 10.1142/S0217732390002675 · Zbl 1020.17508 · doi:10.1142/S0217732390002675
[6] DOI: 10.1016/0370-2693(91)90265-R · doi:10.1016/0370-2693(91)90265-R
[7] DOI: 10.1016/0375-9601(91)90789-B · doi:10.1016/0375-9601(91)90789-B
[8] DOI: 10.1088/0305-4470/24/16/024 · doi:10.1088/0305-4470/24/16/024
[9] DOI: 10.1016/0370-2693(91)90264-Q · doi:10.1016/0370-2693(91)90264-Q
[10] DOI: 10.1142/S021773239200046X · Zbl 1021.81587 · doi:10.1142/S021773239200046X
[11] DOI: 10.1007/BF01121107 · doi:10.1007/BF01121107
[12] DOI: 10.1103/PhysRevA.48.R3407 · doi:10.1103/PhysRevA.48.R3407
[13] DOI: 10.1016/0375-9601(94)90591-6 · Zbl 0959.81552 · doi:10.1016/0375-9601(94)90591-6
[14] DOI: 10.1006/aphy.1995.1094 · Zbl 0843.58062 · doi:10.1006/aphy.1995.1094
[15] DOI: 10.1063/1.530904 · Zbl 0856.17024 · doi:10.1063/1.530904
[16] DOI: 10.1088/0305-4470/29/12/015 · Zbl 0894.17003 · doi:10.1088/0305-4470/29/12/015
[17] DOI: 10.1016/0370-1573(95)00075-5 · doi:10.1016/0370-1573(95)00075-5
[18] DOI: 10.1088/0031-8949/55/5/004 · doi:10.1088/0031-8949/55/5/004
[19] DOI: 10.1088/0305-4470/32/17/303 · Zbl 0943.34075 · doi:10.1088/0305-4470/32/17/303
[20] DOI: 10.1088/1464-4266/1/3/308 · doi:10.1088/1464-4266/1/3/308
[21] Quesne C., Phys. Lett. 272 pp 313– (2000) · Zbl 1115.81360 · doi:10.1016/S0375-9601(00)00457-6
[22] DOI: 10.1088/1464-4266/2/2/311 · doi:10.1088/1464-4266/2/2/311
[23] DOI: 10.1016/S0550-3213(01)00389-3 · Zbl 1020.81019 · doi:10.1016/S0550-3213(01)00389-3
[24] DOI: 10.1088/0305-4470/34/41/313 · Zbl 1056.17006 · doi:10.1088/0305-4470/34/41/313
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.