×

Quantum Markov chains on comb graphs: Ising model. (English. Russian original) Zbl 1469.82011

Proc. Steklov Inst. Math. 313, 178-192 (2021); translation from Tr. Mat. Inst. Steklova 313, 192-207 (2021).
Summary: We construct quantum Markov chains (QMCs) over comb graphs. As an application of this construction, we prove the existence of a disordered phase for Ising type models (within the QMC scheme) over comb graphs. Moreover, we also establish that the associated QMC has the clustering property with respect to translations of the graph. We stress that this paper is the first one where a nontrivial example of QMCs over irregular graphs is given.

MSC:

82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
05C99 Graph theory

References:

[1] Accardi, L., The noncommutative Markovian property, Funct. Anal. Appl., 9, 1, 1-7 (1975) · Zbl 0395.60076 · doi:10.1007/BF01078167
[2] Accardi, L., Topics in quantum probability, Phys. Rep., 77, 3, 169-192 (1981) · doi:10.1016/0370-1573(81)90070-3
[3] Accardi, L.; Cecchini, C., Conditional expectations in von Neumann algebras and a theorem of Takesaki, J. Funct. Anal., 45, 2, 245-273 (1982) · Zbl 0483.46043 · doi:10.1016/0022-1236(82)90022-2
[4] Accardi, L.; Fidaleo, F.; Mukhamedov, F., Markov states and chains on the CAR algebra, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 10, 2, 165-183 (2007) · Zbl 1125.46050 · doi:10.1142/S0219025707002683
[5] Accardi, L.; Frigerio, A., Markovian cocycles, Proc. R. Ir. Acad. A, 83, 251-263 (1983) · Zbl 0534.46045
[6] Accardi, L.; Mukhamedov, F.; Saburov, M., On quantum Markov chains on Cayley tree. I: Uniqueness of the associated chain with \(XY\)-model on the Cayley tree of order two, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 14, 3, 443-463 (2011) · Zbl 1239.46044
[7] Accardi, L.; Mukhamedov, F.; Saburov, M., On quantum Markov chains on Cayley tree. II: Phase transitions for the associated chain with \(XY\)-model on the Cayley tree of order three, Ann. Henri Poincaré, 12, 6, 1109-1144 (2011) · Zbl 1237.82009
[8] Accardi, L.; Mukhamedov, F.; Saburov, M., On quantum Markov chains on Cayley tree. III: Ising model, J. Stat. Phys., 157, 2, 303-329 (2014) · Zbl 1316.46046 · doi:10.1007/s10955-014-1083-y
[9] Accardi, L.; Ohno, H.; Mukhamedov, F., Quantum Markov fields on graphs, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 13, 2, 165-189 (2010) · Zbl 1211.46072 · doi:10.1142/S0219025710004000
[10] Accardi, L.; Souissi, A.; Gheteb, S. El, Quantum Markov chains: A unification approach, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 23, 2 (2020) · Zbl 1501.46052 · doi:10.1142/S0219025720500162
[11] Accardi, L.; Watson, G. S., Quantum random walks, Quantum Probability and Applications IV: Proc. Year of Quantum Probability, Rome, 1987, 1396, 73-88 (1987) · Zbl 0674.60099 · doi:10.1007/BFb0083545
[12] Affleck, I.; Kennedy, T.; Lieb, E. H.; Tasaki, H., Valence bond ground states in isotropic quantum antiferromagnets, Commun. Math. Phys., 115, 3, 477-528 (1988) · doi:10.1007/BF01218021
[13] Araki, H.; Evans, D. E., On a \(C^*\)-algebra approach to phase transition in the two-dimensional Ising model, Commun. Math. Phys., 91, 4, 489-503 (1983) · Zbl 0535.46046
[14] Attal, S.; Petruccione, F.; Sabot, C.; Sinayskiy, I., Open quantum random walks, J. Stat. Phys., 147, 4, 832-852 (2012) · Zbl 1246.82039 · doi:10.1007/s10955-012-0491-0
[15] Baxter, R. J., Exactly Solved Models in Statistical Mechanics (1982), London: Acad. Press, London · Zbl 0538.60093
[16] Carbone, R.; Pautrat, Y., Open quantum random walks: Reducibility, period, ergodic properties, Ann. Henri Poincaré, 17, 1, 99-135 (2016) · Zbl 1333.81205 · doi:10.1007/s00023-015-0396-y
[17] Cirac, J. I.; Verstraete, F., Renormalization and tensor product states in spin chains and lattices, J. Phys. A: Math. Theor., 42, 50 (2009) · Zbl 1181.82010 · doi:10.1088/1751-8113/42/50/504004
[18] Dhahri, A.; Ko, C. K.; Yoo, H. J., Quantum Markov chains associated with open quantum random walks, J. Stat. Phys., 176, 5, 1272-1295 (2019) · Zbl 1480.60203 · doi:10.1007/s10955-019-02342-z
[19] Dhahri, A.; Mukhamedov, F., Open quantum random walks, quantum Markov chains and recurrence, Rev. Math. Phys., 31, 7 (2019) · Zbl 1431.81082 · doi:10.1142/S0129055X1950020X
[20] Dhahri, A.; Mukhamedov, F., Open quantum random walks and quantum Markov chains, Funct. Anal. Appl., 53, 2, 137-142 (2019) · Zbl 1447.46050 · doi:10.1134/S0016266319020084
[21] Fannes, M.; Nachtergaele, B.; Werner, R. F., Ground states of VBS models on Cayley trees, J. Stat. Phys., 66, 3-4, 939-973 (1992) · Zbl 0925.82027 · doi:10.1007/BF01055710
[22] Fannes, M.; Nachtergaele, B.; Werner, R. F., Finitely correlated states on quantum spin chains, Commun. Math. Phys., 144, 3, 443-490 (1992) · Zbl 0755.46039 · doi:10.1007/BF02099178
[23] Feng, Y.; Yu, N.; Ying, M., Model checking quantum Markov chains, J. Comput. Syst. Sci., 79, 7, 1181-1198 (2013) · Zbl 1311.68086 · doi:10.1016/j.jcss.2013.04.002
[24] Gudder, S., Quantum Markov chains, J. Math. Phys., 49, 7 (2008) · Zbl 1152.81457 · doi:10.1063/1.2953952
[25] Kempe, J., Quantum random walks: An introductory overview, Contemp. Phys., 44, 4, 307-327 (2003) · doi:10.1080/00107151031000110776
[26] Konno, N.; Yoo, H. J., Limit theorems for open quantum random walks, J. Stat. Phys., 150, 2, 299-319 (2013) · Zbl 1259.82093 · doi:10.1007/s10955-012-0668-6
[27] Kramers, H. A.; Wannier, G. H., Statistics of the two-dimensional ferromagnet. Part II, Phys. Rev., 60, 3, 263-276 (1941) · Zbl 0027.28506 · doi:10.1103/PhysRev.60.263
[28] Laumann, C. R.; Parameswaran, S. A.; Sondhi, S. L.; Zamponi, F., AKLT models with quantum spin glass ground states, Phys. Rev. B, 81, 17 (2010) · doi:10.1103/PhysRevB.81.174204
[29] Mukhamedov, F.; Barhoumi, A.; Souissi, A., Phase transitions for quantum Markov chains associated with Ising type models on a Cayley tree, J. Stat. Phys., 163, 3, 544-567 (2016) · Zbl 1348.82034 · doi:10.1007/s10955-016-1495-y
[30] Mukhamedov, F.; Barhoumi, A.; Souissi, A., On an algebraic property of the disordered phase of the Ising model with competing interactions on a Cayley tree, Math. Phys. Anal. Geom., 19, 4 (2016) · Zbl 1413.46060 · doi:10.1007/s11040-016-9225-x
[31] Mukhamedov, F.; Barhoumi, A.; Souissi, A.; Gheteb, S. El, A quantum Markov chain approach to phase transitions for quantum Ising model with competing \(XY\)-interactions on a Cayley tree, J. Math. Phys., 61, 9 (2020) · Zbl 1454.82012
[32] Mukhamedov, F.; Gheteb, S. El, Uniqueness of quantum Markov chain associated with XY-Ising model on Cayley tree of order two, Open Syst. Inf. Dyn., 24, 2 (2017) · Zbl 1376.82019 · doi:10.1142/S123016121750010X
[33] Mukhamedov, F.; Gheteb, S. El, Clustering property of quantum Markov chain associated to XY-model with competing Ising interactions on the Cayley tree of order two, Math. Phys. Anal. Geom., 22, 1 (2019) · Zbl 1421.46044 · doi:10.1007/s11040-019-9308-6
[34] Mukhamedov, F.; Gheteb, S. El, Factors generated by \(XY\)-model with competing Ising interactions on the Cayley tree, Ann. Henri Poincaré, 21, 1, 241-253 (2020) · Zbl 1453.46057
[35] Mukhamedov, F.; Rozikov, U., On Gibbs measures of models with competing ternary and binary interactions and corresponding von Neumann algebras, J. Stat. Phys., 114, 3-4, 825-848 (2004) · Zbl 1061.82007 · doi:10.1023/B:JOSS.0000012509.10642.83
[36] Mukhamedov, F.; Rozikov, U., On Gibbs measures of models with competing ternary and binary interactions and corresponding von Neumann algebras. II, J. Stat. Phys., 119, 1-2, 427-446 (2005) · Zbl 1071.82017 · doi:10.1007/s10955-004-2056-3
[37] Mukhamedov, F.; Souissi, A., Quantum Markov states on Cayley trees, J. Math. Anal. Appl., 473, 1, 313-333 (2019) · Zbl 1418.46029 · doi:10.1016/j.jmaa.2018.12.050
[38] Nagaj, D.; Farhi, E.; Goldstone, J.; Shor, P.; Sylvester, I., Quantum transverse-field Ising model on an infinite tree from matrix product states, Phys. Rev. B, 77, 21 (2008) · doi:10.1103/PhysRevB.77.214431
[39] Orús, R., A practical introduction to tensor networks: Matrix product states and projected entangled pair states, Ann. Phys., 349, 117-158 (2014) · Zbl 1343.81003 · doi:10.1016/j.aop.2014.06.013
[40] Portugal, R., Quantum Walks and Search Algorithms (2013), New York: Springer, New York · Zbl 1275.81004 · doi:10.1007/978-1-4614-6336-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.