×

On shear-dependent vibration of Nano frames. (English) Zbl 07791664

Summary: In this study, the effect of shear deformation on the atomic size-dependent free vibration of nanoframes is investigated. The equations of motion of axial and bending vibrations are obtained via the variational algebra according to nonlocal elasticity theory. Axial and bending behaviors are expressed by using simple rod theory and first-order shear deformation beam theory, respectively. By combining the nonlocal finite element solutions for the equations of motion, an eigenvalue formulation for the free vibration of nanoframe is developed. In the presentation of numerical results, firstly, some comparison studies are carried out to show the accuracy of the present analysis. Then, the variations of nondimensional frequencies of three different nanoframe structures are investigated with respect to various parameters, and the results are discussed in detail. The focus of this study is to better understand the dynamic behavior of nanostructures that are within the scope of nano-electro-mechanical systems (NEMS) technology and can be modelled with discrete members.

MSC:

74-XX Mechanics of deformable solids
70-XX Mechanics of particles and systems

Software:

ANSYS
Full Text: DOI

References:

[1] Adhikari, S.; Murmu, T.; McCarthy, M. A., Dynamic finite element analysis of axially vibrating nonlocal rods. Finite Elements in Analysis and Design, 42-50 (2013) · Zbl 1282.74044
[2] Akgöz, B.; Civalek, O., Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams. International Journal of Engineering Sciences, 1268-1280 (2011) · Zbl 1423.74338
[3] Akgöz, B.; Civalek, O., Application of strain gradient elasticity theory for buckling analysis of protein microtubules. Current Applied Physics, 1133-1138 (2011)
[4] Apuzzo, A.; Barretta, R.; Luciano, R.; de Sciarra, F. M.; Penna, R., Free vibrations of Bernoulli-Euler nano-beams by the stress-driven nonlocal integral model. Composites Part B: Engineering, 105-111 (2017)
[5] Aria, A. I.; Rabczuk, T.; Friwsell, M. I., A finite element model for the thermo-elastic analysis of functionally graded porous nanobeams. European Journal of Mechanics - A/Solids (2019) · Zbl 1473.74033
[6] Aria, A. I.; Friswell, M. I., A nonlocal finite element model for buckling and vibration of functionally graded nanobeams. Composites Part B: Engineering, 233-246 (2019)
[7] Barretta, R.; Caporale, A.; Luciano, R.; Vaccaro, M. S., Nonlocal gradient mechanics of nanobeams for non-smooth fields. International Journal of Engineering Science (2023) · Zbl 07700720
[8] Bahrami, A.; Zargaripoor, A.; Shiri, H.; Khosravi, N., Size-dependent free vibration of axially functionally graded tapered nanorods having nonlinear spring constraint with a tip nanoparticle. Journal of Vibration and Control, 2769-2783 (2019)
[9] Barretta, R.; Čanađija, M.; Luciano, R.; de Sciarra, F. M., Stress-driven modeling of nonlocal thermoelastic behavior of nanobeams. International Journal of Engineering Science, 53-67 (2018) · Zbl 1423.74457
[10] Barretta, R.; Čanađija, M.; Luciano, R.; de Sciarra, F. M., On the mechanics of nanobeams on nano-foundations. International Journal of Engineering Science (2022) · Zbl 1523.74064
[11] Beamish, E.; Tabard-Cossa, V.; Godin, M., Programmable DNA nanoswitch sensing with solid-state nanopores. ACS Sensors, 2458-2464 (2019)
[12] Behera, L.; Chakraverty, S., Application of differential quadrature method in free vibration analysis of nanobeams based on various nonlocal theories. Computers & Mathematics with Applications, 1444-1462 (2015) · Zbl 1443.65301
[13] Belarbi, M. O.; Houari, M. S.A.; Daikh, A. A.; Garg, A.; Merzouki, T.; Chalak, H. D., Nonlocal finite element model for the bending and buckling analysis of functionally graded nanobeams using a novel shear deformation theory. Composite Structures (2021)
[14] Beni, Y. T., Size dependent coupled electromechanical torsional analysis of porous FG flexoelectric micro/nanotubes. Mechanical Systems and Signal Processing (2022)
[15] Caporale, A.; Darban, H.; Luciano, R., Nonlocal strain and stress gradient elasticity of Timoshenko nano-beams with loading discontinuities. International Journal of Engineering Science (2022) · Zbl 07498573
[16] Ceballes, S.; Saunders, B. E.; Abdelkafi, A., Nonlocal Timoshenko modeling effectiveness for carbon nanotube-based mass sensors. European Journal of Mechanics - A/Solids (2022), 2022 · Zbl 1506.74169
[17] Chaudhary, R.; Mudimela, P. R., Comprehensive review of low pull-in voltage RF NEMS switches. Microsystem Technologies, 19-33 (2022)
[18] Civalek, O.; Numanoğlu, H. M., Nonlocal finite element analysis for axial vibration of embedded love-bishop nanorods. International Journal of Mechanical Sciences (2020)
[19] Civalek, O.; Uzun, B.; Yayli, M.Ö., An effective analytical method for buckling solutions of a restrained FGM nonlocal beam. Computational and Applied Mathematics, 67 (2022) · Zbl 1499.42019
[20] Civalek, O.; Uzun, B.; Yayli, M.Ö., Torsional and longitudinal vibration analysis of a porous nanorod with arbitrary boundaries. Physica B: Condensed Matter (2022)
[21] Civalek, Ö.; Uzun, B.; Yaylı, M.Ö., On nonlinear stability analysis of saturated embedded porous nanobeams. International Journal of Engineering Sciences (2023) · Zbl 07700730
[22] Cottet, A.; Dartiailh, M. C.; Desjardins, M. M.; Cubaynes, T.; Contamin, L. C.; Delbecq, M., Cavity QED with hybrid nanocircuits: From atomic-like physics to condensed matter phenomena. Journal of Physics: Condensed Matter (2017)
[23] Darban, H.; Luciano, R.; Basista, M., Free transverse vibrations of nanobeams with multiple cracks. International Journal of Engineering Science (2022) · Zbl 07543812
[24] Darban, H.; Luciano, R.; Caporale, A.; Basista, M., Modeling of buckling of nanobeams embedded in elastic medium by local-nonlocal stress-driven gradient elasticity theory. Composite Structures (2022)
[25] Dastjerdi, S.; Akgöz, B.; Civalek, O., On the effect of viscoelasticity on behavior of gyroscopres. International Journal of Engineering Science (2020)
[26] Dastjerdi, S.; Akgöz, B.; Civalek, O., On the shell model for human eye in Glaucoma disease. International Journal of Engineering Science (2021) · Zbl 07278801
[27] Dastjerdi, S.; Akgöz, B.; Civalek, O.; Malikan, M.; Eremeyev, V. A., On the non-linear dynamics of torus-shaped and cylindrical shell structures. International Journal of Engineering Science (2020) · Zbl 07261128
[28] Dastjerdi, S.; Malikan, M.; Akgöz, B.; Civalek, O.; Wiczenbach, T.; Eremeyev, V. A., On the deformation and frequency analyses of SARS-CoV-2 at nanoscale. International Journal of Engineering Science (2022) · Zbl 07444803
[29] Demir, Ç.; Civalek, O., On the analysis of microbeams. International Journal of Engineering Science, 14-33 (2017) · Zbl 1423.74470
[30] Eaton, W. P.; Smith, J. H., Micromachined pressure sensors: Review and recent developments. Smart Materials and Structures, 530 (1997)
[31] Eltaher, M. A.; Alshorbagy, A. E.; Mahmoud, F. F., Vibration analysis of Euler-Bernoulli nanobeams by using finite element method. Applied Mathematical Modelling, 4787-4797 (2013)
[32] Eltaher, M. A.; Khairy, A.; Sadoun, A. M.; Omar, F. A., Static and buckling analysis of functionally graded Timoshenko nanobeams. Applied Mathematics and Computation, 283-295 (2014) · Zbl 1364.74014
[33] Eringen, A. C.; Edelen, D. G.B., On nonlocal elasticity. International Journal of Engineering Science, 233-248 (1972) · Zbl 0247.73005
[34] Eringen, A. C., Edge dislocation in nonlocal elasticity. International Journal of Engineering Science, 177-183 (1977) · Zbl 0357.73079
[35] Eringen, A. C., On differential equations of non local elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics, 4703 (1983)
[36] Fakher, M.; Hosseini-Hashemi, S., Vibration of two-phase local/nonlocal Timoshenko nanobeams with an efficient shear-locking-free finite-element model and exact solution. Engineering with Computers, 231-245 (2022)
[37] Feng, H.; Zhao, C.; Tan, P.; Liu, R.; Chen, X.; Li, Z., Nanogenerator for biomedical applications. Advanced Healthcare Materials (2018)
[38] Feng, H.; Zhao, J.; Zhou, C.; Song, M., Design and analysis of the capacitive RF MEMS switches with support pillars. Sensors, 8864 (2022)
[39] Ferrari, M.; Granik, V. T.; Imam, A.; Nadeau, J. C., Advances in doublet mechanics (1997), Springer-Verlag: Springer-Verlag Berlin · Zbl 0882.73002
[40] Fleck, N. A.; Hutchinson, J. W., A phenomenological theory for strain gradient effects in plasticity. Journal of Mechanics and Physics of Solids, 1825-1857 (1993) · Zbl 0791.73029
[41] Greenwood, J. C.; Satchell, D. W., Miniature silicon resonant pressure sensor. IEE Proceedings D Control Theory and Applications, 369-372 (1988)
[42] Gurtin, M. E.; Murdoch, A. I., A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 291-323 (1975) · Zbl 0326.73001
[43] Hozhabrossadati, S. M.; Challamel, N.; Rezaiee-Pajand, M.; Sani, A. A., Free vibration of a nanogrid based on Eringen’s stress gradient model. Mech. Based Des. Struct. Mach., 537-555 (2022)
[44] Jaafar, H.; Beh, K. H.; Yunus, N. A.M.; Hasan, W. Z.W.; Shafie, S.; Sidek, O., A comprehensive study on RF MEMS switch. Microsystem Technologies, 2109-2121 (2014)
[45] Jalaei, M. H.; Thai, H. T.; Civalek, O., On viscoelastic transient response of magnetically imperfect functionally graded nanobeams. International Journal of Engineering Science (2022) · Zbl 07498571
[46] Karami, B.; Janghorban, M.; Rabczuk, T., Dynamics of two-dimensional functionally graded tapered Timoshenko nanobeam in thermal environment using nonlocal strain gradient theory. Composites Part B: Engineering (2020)
[47] Khosravi, F.; Hosseini, S. A.; Hamidi, B. A.; Dimitri, R.; Tornabene, F., Nonlocal torsional vibration of elliptical nanorods with different boundary conditions. Vibration, 189-203 (2020)
[48] Kinnell, P. K.; Craddock, R., Advances in silicon resonant pressure transducers. Procedia Chemistry, 104-107 (2009)
[49] Li, L.; Li, X.; Hu, Y., Free vibration analysis of nonlocal strain gradient beams made of functionally graded material. International Journal of Engineering Science, 77-92 (2016) · Zbl 1423.74399
[50] Loh, O. Y.; Espinosa, H. D., Nanoelectromechanical contact switches. Nature Nanotechnology, 283-295 (2012)
[51] Luo, Z.; Chen, D.; Wang, J.; Li, Y.; Chen, J., high-Q resonant pressure microsensor with through glass electrical interconnections based on wafer-level MEMS vacuum packaging. Sensors, 24244-24257 (2014)
[52] Malikan, M.; Dastjerdi, S.; Eremeyev, V. A.; Sedighi, H. M., On a 3D material modelling of smart nanocomposite structures. International Journal of Engineering Sciences (2023) · Zbl 07776200
[53] Malikan, M.; Eremeyev, V. A., On time-dependent nonlinear dynamic response of micro-elastic solids. International Journal of Engineering Sciences (2023) · Zbl 07646847
[54] Mei, C., Wave analysis of in-plane vibrations of L-shaped and portal planar frame structures. Journal of Vibration and Acoustics (2012)
[55] Moaveni, S., Finite element analysis: Theory and application with ansys (2015), Pearson
[56] Mustapha, K. B., Free vibration of microscale frameworks using modified couple stress and a combination of Rayleigh-Love and Timoshenko theories. Journal of Vibration and Control, 1285-1310 (2020)
[57] Nazemi, H.; Joseph, A.; Park, J.; Emadi, A., Advanced micro- and mano-gas sensor technology: A review. Sensors, 1285 (2019)
[58] Numanoğlu, H. M.; Akgöz, B.; Civalek, O., On dynamic analysis of nanorods. International Journal of Engineering Science, 33-50 (2018)
[59] Numanoğlu, H. M.; Civalek, O., On the torsional vibration of nanorods surrounded by elastic matrix via nonlocal FEM. International Journal of Mechanical Sciences (2019)
[60] Numanoğlu, H. M.; Civalek, O., On the dynamics of small-sized structures. International Journal of Engineering Science (2019) · Zbl 1476.74060
[61] Numanoğlu, H. M.; Civalek, O., Novel size-dependent finite element formulation for modal analysis of cracked nanorods. Materials Today Communications (2022)
[62] Numanoğlu, H. M.; Ersoy, H.; Akgöz, B.; Civalek, O., A new eigenvalue problem solver for thermo-mechanical vibration of Timoshenko nanobeams by an innovative nonlocal finite element method. Mathematical Methods in the Applied Sciences, 2592-2614 (2022) · Zbl 1538.74068
[63] Penna, R., Bending analysis of functionally graded nanobeams based on stress-driven nonlocal model incorporating surface energy effects. International Journal of Engineering Science (2023) · Zbl 07700722
[64] Pinnola, F. P.; Vaccaro, M. S.; Barretta, R.; de Sciarra, F. M., Finite element method for stress-driven nonlocal beams. Engineering Analysis with Boundary Elements, 22-34 (2022) · Zbl 1521.74246
[65] Reddy, J. N.; Pang, S. D., Nonlocal continuum theories of beams for the analysis of carbon nanotubes. Journal of Applied Physics (2008)
[66] Rezaiee-Pajand, M.; Rajabzadeh-Safaei, N., Stress-driven nonlinear behavior of curved nanobeams. International Journal of Engineering Science (2022) · Zbl 07575006
[67] Russillo, A. F.; Failla, G.; Alotta, G.; Barretta, R., On the dynamics of nano-frames. International Journal of Engineering Science (2021) · Zbl 07314432
[68] Russillo, A. F.; Failla, G.; Barretta, R.; de Sciarra, F. M., On the dynamics of 3D nonlocal solids. International Journal of Engineering Science (2022) · Zbl 1523.74010
[69] Shafiei, N.; She, G. L., On vibration of functionally graded nano-tubes in the thermal environment. International Journal of Engineering Science, 84-98 (2018) · Zbl 1423.74407
[70] Stanisavljevic, M.; Krizkova, S.; Vaculovicova, M.; Kizek, R.; Adam, V., Quantum dots-fluorescence resonance energy transfer-based nanosensors and their application. Biosensors and Bioelectronics, 562-574 (2015)
[71] Taima, M. S.; El-Sayed, T.; Farghaly, S. H., Longitudinal vibration analysis of a stepped nonlocal rod embedded in several elastic media. Journal of Vibration Engineering & Technologies, 1399-1412 (2022)
[72] Toupin, R. A., Elastic materials with couple-stresses. Archive for Rational Mechanics and Analysis, 385-414 (1962) · Zbl 0112.16805
[73] Vaccaro, M. S., On geometrically nonlinear mechanics of nanocomposite beams. International Journal of Engineering Science (2022) · Zbl 07498579
[74] Wang, S.; Ding, W.; Li, Z.; Xu, B.; Zhai, C.; Kang, W., A size-dependent quasi-3D model for bending and buckling of porous functionally graded curved nanobeam. International Journal of Engineering Science (2023) · Zbl 07776198
[75] Xie, B.; Xing, Y.; Wang, Y.; Chen, D.; Wang, J., Vacuum-packaged resonant pressure sensor with dual resonators for high sensitivity and linearity. Procedia Engineering, 194-199 (2015)
[76] Xu, X.; Karami, B.; Janghorban, M., On the dynamics of nanoshells. International Journal of Engineering Science (2021) · Zbl 07278807
[77] Yang, W.; Wang, S.; Kang, W.; Yu, T.; Li, Y., A unified high-order model for size-dependent vibration of nanobeam based on nonlocal strain/stress gradient elasticity with surface effect. International Journal of Engineering Science (2023) · Zbl 07646844
[78] Zenkour, A. M.; Sobhy, M., A simplified shear and normal deformations nonlocal theory for bending of nanobeams in thermal environment. Physica E: Low-Dimensional Systems and Nanostructures, 121-128 (2015)
[79] Zhang, P.; Qing, H., Free vibration analysis of Euler-Bernoulli curved beams using two-phase nonlocal integral models. Journal of Vibration and Control (2021)
[80] Zhang, P.; Qing, H.; Gao, S. F., Exact solutions for bending of Timoshenko curved nanobeams made of functionally graded materials based on stress-driven nonlocal integral model. Composite Structures (2020)
[81] Zhu, X.; Li, L., Longitudinal and torsional vibrations of size-dependent rods via nonlocal integral elasticity. International Journal of Mechanical Sciences, 639-650 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.