×

Transition probability and total crossing events in the multi-species asymmetric exclusion process. (English) Zbl 1512.60064

Summary: We present explicit formulas for total crossing events in the multi-species asymmetric exclusion process (\(r\)-ASEP) with underlying \(U(\widehat{\mathfrak{sl}}_{r+1})\) symmetry. In the case of the two-species TASEP these can be derived using an explicit expression for the general transition probability on \(\mathbb{Z}\) in terms of a multiple contour integral derived from a nested Bethe ansatz approach. For the general \(r\)-ASEP we employ a vertex model approach within which the probability of total crossing can be derived from partial symmetrisation of an explicit high rank rainbow partition function. In the case of \(r\)-TASEP, the total crossing probability can be show to reduce to a multiple integral over the product of \(r\) determinants. For two-TASEP we additionally derive convenient formulas for cumulative total crossing probabilities using Bernoulli-step initial conditions for particles of type 2 and type 1 respectively.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
82B23 Exactly solvable models; Bethe ansatz
05E05 Symmetric functions and generalizations
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
82D30 Statistical mechanics of random media, disordered materials (including liquid crystals and spin glasses)

References:

[1] Aggarwal, A., Convergence of the stochastic six-vertex model to the ASEP, Math. Phys. Anal. Geom., 20, 1-20 (2017) · Zbl 1413.82005 · doi:10.1007/s11040-016-9235-8
[2] Alcaraz, F. C.; Bariev, R. Z., Exact solution of asymmetric diffusion with n classes of particles of arbitrary size and hierarchical order, Braz. J. Phys., 30, 655 (2000) · doi:10.1590/S0103-97332000000400004
[3] Alcaraz, F. C.; Dasmahapatra, S.; Rittenberg, V., Stochastic models with boundaries and quadratic algebras, Phys. A: Stat. Mech., 257, 1-9 (1998) · doi:10.1016/S0378-4371(98)00123-X
[4] Alcaraz, F. C.; Rittenberg, V., Reaction-diffusion processes as physical realizations of hecke algebras, Phys. Lett. B, 314, 377-80 (1993) · doi:10.1016/0370-2693(93)91252-I
[5] Amir, G.; Corwin, I.; Quastel, J., Probability distribution of the free energy of the continuum directed random polymer in 1 + 1 dimensions, Commun. Pure Appl. Math., 64, 466-537 (2010) · Zbl 1222.82070 · doi:10.1002/cpa.20347
[6] Arita, C.; Kuniba, A.; Sakai, K.; Sawabe, T., Spectrum of a multi-species asymmetric simple exclusion process on a ring, J. Phys. A, 42 (2009) · Zbl 1179.82092 · doi:10.1088/1751-8113/42/34/345002
[7] Baik, J.; Rains, E. M., Limiting distributions for a polynuclear growth model with external sources, J. Stat. Phys., 100, 523-41 (2000) · Zbl 0976.82043 · doi:10.1023/A:1018615306992
[8] Barabási, A. L.; Stanley, H. E., Fractal Concepts in Surface Growth (1995), Cambridge: Cambridge University Press, Cambridge · Zbl 0838.58023
[9] Belitsky, V.; Schütz, G. M., Self-duality and shock dynamics in the n-species priority asep, Stoch. Process. Their Appl., 128, 1165-207 (2018) · Zbl 1391.60229 · doi:10.1016/j.spa.2017.07.003
[10] Borodin, A., On a family of symmetric rational functions, Adv. Math., 306, 973-1018 (2017) · Zbl 1355.05250 · doi:10.1016/j.aim.2016.10.040
[11] Borodin, A.; Bufetov, A., Color-position symmetry in interacting particle systems, Ann. Probab., 49, 1607-32 (2021) · Zbl 1484.60106 · doi:10.1214/20-AOP1463
[12] Borodin, A.; Corwin, I., Macdonald processes, Prob. Theory Rel. Fields, 158, 225-400 (2014) · Zbl 1291.82077 · doi:10.1007/s00440-013-0482-3
[13] Borodin, A.; Corwin, I.; Sasamoto, T., From duality to determinants for q-tasep and ASEP, Ann. Probab., 42, 2314-82 (2014) · Zbl 1304.82048 · doi:10.1214/13-AOP868
[14] Borodin, A.; Gorin, V.; Wheeler, M., Shift-invariance for vertex models and polymers, Proc. Math. Soc., 124, 182-299 (2020) · Zbl 1536.60009 · doi:10.1112/plms.12427
[15] Borodin, A.; Petrov, L. (2016), Oxford: Oxford University Press, Oxford · Zbl 1370.01001
[16] Borodin, A.; Petrov, L., Higher spin six vertex model and symmetric rational functions, Sel. Math., 24, 751-874 (2018) · Zbl 1405.60141 · doi:10.1007/s00029-016-0301-7
[17] Borodin, A.; Wheeler, M., Coloured stochastic vertex models and their spectral theory (2018)
[18] Bosnjak, G.; Mangazeev, V. V., Construction ofr-matrices for symmetric tensor representations related to \(####\), J. Phys. A, 49 (2016) · Zbl 1357.81120 · doi:10.1088/1751-8113/49/49/495204
[19] Calabrese, P.; Le Doussal, P., Exact solution for the kardar-parisi-zhang equation with flat initial conditions, Phys. Rev. Lett., 106 (2011) · doi:10.1103/PhysRevLett.106.250603
[20] Cantini, L., Algebraic bethe ansatz for the two species asep with different hopping rates, J. Phys. A, 41 (2008) · Zbl 1139.82013 · doi:10.1088/1751-8113/41/9/095001
[21] Cantini, L.; de Gier, J.; Wheeler, M., Matrix product formula for Macdonald polynomials, J. Phys. A, 48 (2015) · Zbl 1327.81311 · doi:10.1088/1751-8113/48/38/384001
[22] Chatterjee, S.; Schütz, G. M., Determinant representation for some transition probabilities in the TASEP with second class particles, J. Stat. Phys., 140, 900-16 (2010) · Zbl 1197.82077 · doi:10.1007/s10955-010-0022-9
[23] Chen, Z2019Exact solutions in multi-species exclusion processesPhD ThesisThe University of Melbourne
[24] Chen, Z.; de Gier, J.; Hiki, I.; Sasamoto, T., Exact confirmation of 1D nonlinear fluctuating hydrodynamics for a two-species exclusion process, Phys. Rev. Lett., 120 (2018) · doi:10.1103/PhysRevLett.120.240601
[25] Chen, Z.; de Gier, J.; Hiki, I.; Sasamoto, T.; Usui, M., Limiting current distribution for a two species asymmetric exclusion process, Commun. Math. Phys., 395, 59-142 (2022) · Zbl 07587136 · doi:10.1007/s00220-022-04408-8
[26] Chen, Z.; de Gier, J.; Wheeler, M., Integrable stochastic dualities and the deformed Knizhnik-Zamolodchikov equation, Int. Math. Res. Not., 2020, 5872-925 (2018) · Zbl 07471403 · doi:10.1093/imrn/rny159
[27] Corwin, I.; Petrov, L., Stochastic higher spin vertex models on the line, Commun. Math. Phys., 343, 651-700 (2015) · Zbl 1348.82055 · doi:10.1007/s00220-015-2479-5
[28] de Gier, J.; Essler, F. H L., Bethe ansatz solution of the asymmetric exclusion process with open boundaries, Phys. Rev. Lett., 95 (2005) · doi:10.1103/PhysRevLett.95.240601
[29] de Gier, J.; Essler, F. H L., Exact spectral gaps of the asymmetric exclusion process with open boundaries, J. Stat. Mech.: Theory Exp., 2006 (2006) · doi:10.1088/1742-5468/2006/12/P12011
[30] de Gier, J.; Essler, F. H L., Slowest relaxation mode of the partially asymmetric exclusion process with open boundaries, J. Phys. A, 41 (2008) · Zbl 1151.82384 · doi:10.1088/1751-8113/41/48/485002
[31] Derrida, B.; Janowsky, S. A.; Lebowitz, J. L.; Speer, E. R., Exact solution of the totally asymmetric simple exclusion process: shock profiles, J. Stat. Phys., 73, 813-42 (1993) · Zbl 1102.60320 · doi:10.1007/BF01052811
[32] Ferrari, P. A.; Kipnis, C.; Saada, E., Microscopic structure of travelling waves in the asymmetric simple exclusion process, Ann. Probab., 19, 226-44 (1991) · Zbl 0725.60113 · doi:10.1214/aop/1176990542
[33] Ferrari, P. A.; Martin, J. B., Stationary distributions of multi-type totally asymmetric exclusion processes, Ann. Probab., 35, 807-32 (2007) · Zbl 1117.60089 · doi:10.1214/009117906000000944
[34] Ferrari, P. L.; Nejjar, P.; Ghosal, P., Limit law of a second class particle in TASEP with non-random initial condition, Ann. Inst. Henri Poincare B, 55, 1203-25 (2019) · Zbl 1472.82023 · doi:10.1214/18-AIHP916
[35] Galashin, P., Symmetries of stochastic colored vertex models, Ann. Probab., 49, 2175-219 (2021) · Zbl 1479.82046 · doi:10.1214/20-AOP1502
[36] Garbali, A.; de Gier, J.; Wheeler, M., A new generalisation of Macdonald polynomials, Commun. Math. Phys., 352, 773-804 (2017) · Zbl 1360.05182 · doi:10.1007/s00220-016-2818-1
[37] Golinelli, O.; Mallick, K., The asymmetric simple exclusion process: an integrable model for non-equilibrium statistical mechanics, J. Phys. A, 39, 12679-705 (2006) · Zbl 1129.82028 · doi:10.1088/0305-4470/39/41/S03
[38] Gwa, L. H.; Spohn, H., Bethe solution for the dynamical-scaling exponent of the noisy burgers equation, Phys. Rev. A, 46, 844-54 (1992) · doi:10.1103/PhysRevA.46.844
[39] Gwa, L. H.; Spohn, H., Six-vertex model, roughened surfaces and an asymmetric spin Hamiltonian, Phys. Rev. Lett., 68, 725-8 (1992) · Zbl 0969.82526 · doi:10.1103/PhysRevLett.68.725
[40] Johansson, K., Shape fluctuations and random matrices, Commun. Math. Phys., 209, 437-76 (2000) · Zbl 0969.15008 · doi:10.1007/s002200050027
[41] Kardar, M.; Parisi, G.; Zhang, Y. C., Dynamic scaling of growing interfaces, Phys. Rev. Lett., 56, 889-92 (1986) · Zbl 1101.82329 · doi:10.1103/PhysRevLett.56.889
[42] Karimipour, V., Multispecies asymmetric simple exclusion process and its relation to traffic flow, Phys. Rev. E, 59, 205-12 (1999) · doi:10.1103/PhysRevE.59.205
[43] Kim, D., Bethe ansatz solution for crossover scaling functions of the asymmetric XXZ chain and the Kardar-Parisi-Zhang-type growth model, Phys. Rev. E, 52, 3512-24 (1995) · doi:10.1103/PhysRevE.52.3512
[44] Kirillov, A. N.; Yu Reshetikhin, N., Exact solution of the integrable XXZ Heisenberg model with arbitrary spin. I. The ground state and the excitation spectrum, J. Phys. A, 20, 1565-85 (1987) · doi:10.1088/0305-4470/20/6/038
[45] Kuan, J., An algebraic construction of duality functions for the stochastic \(####\) vertex model and its degenerations, Commun. Math. Phys., 359, 121-87 (2018) · Zbl 1394.82004 · doi:10.1007/s00220-018-3108-x
[46] Kuan, J., Probability distributions of multi-species q-tazrp and asep as double cosets of parabolic subgroups, Ann. Henri Poincaré, 20, 1149-73 (2019) · Zbl 1407.05248 · doi:10.1007/s00023-019-00761-y
[47] Kuan, J., Determinantal expressions in multi-species TASEP, SIGMA, 16, 133 (2020) · Zbl 1454.60143 · doi:10.3842/SIGMA.2020.133
[48] Kuan, J., Two dualities: Markov and Schur-Weyl, Int. Math. Res. Not., 2022, rnaa333 (2021) · Zbl 1498.81143 · doi:10.1093/imrn/rnaa333
[49] Kulish, P. P.; Reshetikhin, N.; Sklyanin, E., Yang-baxter equation and representation theory: I, Lett. Math. Phys., 5, 393-403 (1981) · Zbl 0502.35074 · doi:10.1007/BF02285311
[50] Kuniba, A.; Maruyama, S.; Okado, M., Multispecies TASEP and the tetrahedron equation, J. Phys. A: Math. Theor., 49 (2016) · Zbl 1342.82108 · doi:10.1088/1751-8113/49/11/114001
[51] Kuniba, A.; Maruyama, S.; Okado, M., Multispecies totally asymmetric zero range process: I. Multiline process and combinatorial R, J. Int. Syst., 1, xyw002 (2016) · Zbl 1400.37096 · doi:10.1093/integr/xyw002
[52] Lee, E., Exact formulas of the transition probabilities of the multi-species asymmetric simple exclusion process (2018)
[53] Liggett, T. M., Interacting Particle Systems (1985), Berlin: Springer, Berlin · Zbl 0559.60078
[54] Liggett, T. M., Stochastic Interacting Systems: Contact, Voter and Exclusion Processes (1999), Berlin: Springer, Berlin · Zbl 0949.60006
[55] MacDonald, C. T.; Gibbs, J. H., Concerning the kinetics of polypeptide synthesis on polyribosomes, Biopolymers, 7, 707-25 (1969) · doi:10.1002/bip.1969.360070508
[56] MacDonald, C. T.; Gibbs, J. H.; Pipkin, A. C., Kinetics of biopolymerization on nucleic acid templates, Biopolymers, 6, 1-25 (1968) · doi:10.1002/bip.1968.360060102
[57] Mallick, K.; Mallick, S.; Rajewsky, N., Exact solution of an exclusion process with three classes of particles and vacancies, J. Phys. A, 32, 8399-410 (1999) · Zbl 0955.82013 · doi:10.1088/0305-4470/32/48/303
[58] Mangazeev, V. V., On the yang-baxter equation for the six-vertex model, Nucl. Phys. B, 882, 70-96 (2014) · Zbl 1285.82017 · doi:10.1016/j.nuclphysb.2014.02.019
[59] Nagao, T.; Sasamoto, T., Asymmetric simple exclusion process and modified random matrix ensembles, Nucl. Phys. B, 699, 487-502 (2004) · Zbl 1123.82345 · doi:10.1016/j.nuclphysb.2004.08.016
[60] Nejjar, P., KPZ statistics of second class particles in asep via mixing, Commun. Math. Phys., 378, 601-23 (2019) · Zbl 1446.82055 · doi:10.1007/s00220-020-03782-5
[61] Nejjar, P., KPZ statistics of second class particles in ASEP via mixing, Commun. Math. Phys., 378, 601-23 (2020) · Zbl 1446.82055 · doi:10.1007/s00220-020-03782-5
[62] Perk, J. H H.; Schultz, C. L., New families of commuting transfer matrices in q-state vertex models, Phys. Lett. A, 84, 407 (1981) · doi:10.1016/0375-9601(81)90994-4
[63] Popkov, V.; Fouladvand, M. E.; Schütz, G. M., A sufficient criterion for integrability of stochastic many-body dynamics and quantum spin chains, J. Phys. A: Math. Gen., 35, 7187-204 (2002) · Zbl 1040.82049 · doi:10.1088/0305-4470/35/33/314
[64] Povolotsky, A., On integrability of zero-range chipping models with factorized steady state, J. Phys. A: Math. Theor., 46 (2013) · Zbl 1290.82022 · doi:10.1088/1751-8113/46/46/465205
[65] Prolhac, S.; Evans, M.; Mallick, K., Matrix product solution of the multispecies partially asymmetric exclusion process, J. Phys. A, 42 (2009) · Zbl 1168.82013 · doi:10.1088/1751-8113/42/16/165004
[66] Prähofer, M.; Spohn, H., Current fluctuations for the totally asymmetric simple exclusion process, In and Out of Equilibrium, pp 185-204 (2002), Boston, MA: Birkhäuser, Boston, MA · Zbl 1015.60093
[67] Sasamoto, T., Spatial correlations of the 1d KPZ surface on a flat substrate, J. Phys. A, 38, L549-56 (2005) · doi:10.1088/0305-4470/38/33/L01
[68] Sasamoto, T.; Spohn, H., The crossover regime for the weakly asymmetric simple exclusion process, J. Stat. Phys., 140, 209-31 (2010) · Zbl 1197.82093 · doi:10.1007/s10955-010-9990-z
[69] Sasamoto, T.; Spohn, H., Exact height distributions for the KPZ equation with narrow wedge initial condition, Nucl. Phys. B, 834, 523-42 (2010) · Zbl 1204.35137 · doi:10.1016/j.nuclphysb.2010.03.026
[70] Sasamoto, T.; Spohn, H., One-dimensional Kardar-Parisi-Zhang equation: an exact solution and its universality, Phys. Rev. Lett., 104 (2010) · doi:10.1103/PhysRevLett.104.230602
[71] Schütz, G. M., Exact solution of the master equation for the asymmetric exclusion process, J. Stat. Phys., 88, 427-45 (1997) · Zbl 0945.82508 · doi:10.1007/BF02508478
[72] Schütz, G. M., Critical phenomena and universal dynamics in one-dimensional driven diffusive systems with two species of particles, J. Phys. A, 36, R339-79 (2003) · Zbl 1049.82021 · doi:10.1088/0305-4470/36/36/201
[73] Spohn, H., Large Scale Dynamics of Interacting Particles (1991), Berlin: Springer, Berlin · Zbl 0742.76002
[74] Tracy, C. A.; Widom, H., Integral formulas for the asymmetric simple exclusion process, Commun. Math. Phys., 279, 815-44 (2008) · Zbl 1148.60080 · doi:10.1007/s00220-008-0443-3
[75] Tracy, C. A.; Widom, H., Integral formulas for the asymmetric simple exclusion process (2008)
[76] Tracy, C. A.; Widom, H., Asymptotics in ASEP with step initial condition, Commun. Math. Phys., 209, 129-54 (2009) · Zbl 1184.60036 · doi:10.1007/s00220-009-0761-0
[77] Tracy, C. A.; Widom, H., On the asymmetric simple exclusion process with multiple species, J. Stat. Phys., 150, 457-70 (2013) · Zbl 1269.82046 · doi:10.1007/s10955-012-0531-9
[78] Yang, C. N.; Yang, C. P., One-dimensional chain of anisotropic spin-spin interactions. 1. Proof of bethe’s hypothesis for the ground state in a finite system, Phys. Rev., 150, 321-7 (1966) · doi:10.1103/PhysRev.150.321
[79] Yau, H. T., \(####\) law of the two dimensional asymmetric simple exclusion, Ann. Math., 159, 377-405 (2004) · Zbl 1060.60099 · doi:10.4007/annals.2004.159.377
[80] Zhang, X.; Wen, F.; de Gier, J., T-Q relations for the integrable two-species asymmetric simple exclusion process with open boundaries, J. Stat. Mech.: Theory Exp., 2019 (2019) · Zbl 1539.82202 · doi:10.1088/1742-5468/aaeb4a
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.