×

Algebraic and geometric structures inside the Birkhoff polytope. (English) Zbl 1507.15021

Summary: The Birkhoff polytope \(\mathcal{B}_d\) consisting of all bistochastic matrices of order \(d\) assists researchers from many areas, including combinatorics, statistical physics, and quantum information. Its subset \(\mathcal{U}_d\) of unistochastic matrices, determined by squared moduli of unitary matrices, is of particular importance for quantum theory as classical dynamical systems described by unistochastic transition matrices can be quantized. In order to investigate the problem of unistochasticity, we introduce the set \(\mathcal{L}_d\) of bracelet matrices that forms a subset of \(\mathcal{B}_d\), but a superset of \(\mathcal{U}_d\). We prove that for every dimension \(d\), this set contains the set of factorizable bistochastic matrices \(\mathcal{F}_d\) and is closed under matrix multiplication by elements of \(\mathcal{F}_d\). Moreover, we prove that both \(\mathcal{L}_d\) and \(\mathcal{F}_d\) are star-shaped with respect to the flat matrix. We also analyze the set of \(d \times d\) unistochastic matrices arising from circulant unitary matrices and show that their spectra lie inside \(d\)-hypocycloids on the complex plane. Finally, applying our results to small dimensions, we fully characterize the set of circulant unistochastic matrices of order \(d \leq 4\) and prove that such matrices form a monoid for \(d = 3\).
©2022 American Institute of Physics

MSC:

15B51 Stochastic matrices
52B05 Combinatorial properties of polytopes and polyhedra (number of faces, shortest paths, etc.)
05B20 Combinatorial aspects of matrices (incidence, Hadamard, etc.)

References:

[1] Bhatia, R., Matrix Analysis (2013), Springer Science & Business Media
[2] van der Waerden, B. L., Jahresber. Dtsch. Math. Ver., 35, 117 (1926)
[3] Bengtsson, I. (2004)
[4] Pakonski, P.; Życzkowski, K.; Kus, M., J. Phys. A: Math. Gen., 34, 9303 (2001) · Zbl 0995.82040 · doi:10.1088/0305-4470/34/43/313
[5] Pakoński, P.; Tanner, G.; Życzkowski, K., J. Stat. Phys., 111, 1331 (2003) · Zbl 1019.05046 · doi:10.1023/a:1023012502046
[6] Ambainis, A., Int. J. Quantum Inf., 01, 507 (2003) · Zbl 1069.81505 · doi:10.1142/s0219749903000383
[7] Meyer, D. A., J. Stat. Phys., 85, 551-574 (1996) · Zbl 0952.37501 · doi:10.1007/bf02199356
[8] Aharonov, Y.; Davidovich, L.; Zagury, N., Phys. Rev. A, 48, 1687 (1993) · doi:10.1103/physreva.48.1687
[9] Korzekwa, K.; Czachórski, S.; Puchała, Z.; Życzkowski, K., Phys. Rev. X, 11, 021019 (2021) · doi:10.1103/PhysRevX.11.021019
[10] Bigi, I. I.; Sanda, A. I., CP Violation (2009), Cambridge University Press · Zbl 1225.81001
[11] Diţă, P., J. Math. Phys., 47, 083510 (2006) · Zbl 1112.62300 · doi:10.1063/1.2229424
[12] Jarlskog, C., Phys. Rev. Lett., 55, 1039 (1985) · doi:10.1103/physrevlett.55.1039
[13] Mennessier, G.; Nuyts, J., J. Math. Phys., 15, 1525 (1974) · Zbl 0288.15024 · doi:10.1063/1.1666843
[14] Landé, A., Br. J. Philos. Sci., 10, 16 (1959) · doi:10.1093/bjps/x.37.16
[15] Rovelli, C., Int. J. Theor. Phys., 35, 1637-1678 (1996) · Zbl 0885.94012 · doi:10.1007/bf02302261
[16] Korzekwa, K.; Lostaglio, M. (2020)
[17] Poon, Y.-T.; Tsing, N.-K., Linear Multilinear Algebra, 21, 253 (1987) · Zbl 0635.15020 · doi:10.1080/03081088708817799
[18] Bengtsson, I.; Ericsson, Å.; Kuś, M.; Tadej, W.; Życzkowski, K., Commun. Math. Phys., 259, 307 (2005) · Zbl 1081.60539 · doi:10.1007/s00220-005-1392-8
[19] Chan, C. S.; Robbins, D. P., Exp. Math., 8, 291 (1999) · Zbl 0951.05015 · doi:10.1080/10586458.1999.10504406
[20] De Loera, J. A.; Liu, F.; Yoshida, R., J. Algebraic Combinatorics, 30, 113 (2009) · Zbl 1187.05009 · doi:10.1007/s10801-008-0155-y
[21] Canfield, E. R.; McKay, B. D., Online J. Anal. Combinatorics, 4, 4 (2009) · Zbl 1193.15034
[22] Sinkhorn, R., Ann. Math. Stat., 35, 876 (1964) · Zbl 0134.25302 · doi:10.1214/aoms/1177703591
[23] Cappellini, V.; Sommers, H.-J.; Bruzda, W.; Życzkowski, K., J. Phys. A: Math. Theor., 42, 365209 (2009) · Zbl 1179.15036 · doi:10.1088/1751-8113/42/36/365209
[24] Marcus, M.; Kidman, K.; Sandy, M., Linear Multilinear Algebra, 15, 331 (1984) · Zbl 0539.15012 · doi:10.1080/03081088408817601
[25] Lostaglio, M.; Alhambra, Á. M.; Perry, C., Quantum, 2, 52 (2018) · doi:10.22331/q-2018-02-08-52
[26] Karabegov, A., AIP Conf. Proc., 1079, 39 (2008) · doi:10.1063/1.3043870
[27] Au-Yeung, Y.-H.; Cheng, C.-M., Linear Algebra Appl., 150, 242 (1991) · Zbl 0723.15019 · doi:10.1016/0024-3795(91)90172-s
[28] Nakazato, H., Nihonkai Math. J., 7, 83 (1996) · Zbl 0997.15500
[29] Dunkl, C.; Życzkowski, K., J. Math. Phys., 50, 123521 (2009) · Zbl 1373.15051 · doi:10.1063/1.3272543
[30] Davis, P. J., Circulant Matrices (1979), Wiley-Interscience Publication · Zbl 0418.15017
[31] Bolaños-Servin, J. R.; Quezada, R., Infinite Dimens. Anal., Quantum Probab. Relat. Top., 16, 1350016 (2013) · Zbl 1302.46051 · doi:10.1142/s0219025713500161
[32] Bolaños-Servin, J. R.; Carbone, R., Open Syst. Inf. Dyn., 21, 1450007 (2014) · Zbl 1309.81122 · doi:10.1142/s1230161214500073
[33] Bolaños-Servin, J. R.; Carbone, R.; Quezada, R., Infinite Dimens. Anal., Quantum Probab. Relat. Top., 22, 1950017 (2019) · Zbl 1436.82014 · doi:10.1142/s0219025719500176
[34] Smith, A. C., Mathematics and Computing, 239-250 (2015), Springer · Zbl 1325.15029
[35] Au-Yeung, Y.-H.; Poon, Y.-T., Linear Algebra Appl., 27, 69 (1979) · Zbl 0416.15016 · doi:10.1016/0024-3795(79)90032-6
[36] Jarlskog, C.; Stora, R., Phys. Lett. B, 208, 268 (1988) · doi:10.1016/0370-2693(88)90428-5
[37] Watrous, J., The Theory of Quantum Information (2018), Cambridge University Press · Zbl 1393.81004
[38] Jaekel, U., Procedia Comput. Sci., 4, 1403 (2011) · doi:10.1016/j.procs.2011.04.151
[39] Pak, I., Ann. Combinatorics, 4, 83 (2000) · Zbl 0974.52010 · doi:10.1007/pl00001277
[40] Rajchel, G.; Gąsiorowski, A.; Życzkowski, K., Math. Comput. Sci., 12, 473 (2018) · Zbl 1444.05033 · doi:10.1007/s11786-018-0384-y
[41] Zyczkowski, K.; Kus, M.; Somczyski, W.; Sommers, H.-J., J. Phys. A: Math. Gen., 36, 3425 (2003) · Zbl 1038.15012 · doi:10.1088/0305-4470/36/12/333
[42] Karpelevich, F. I., Izv. Akad. Nauk SSSR Ser. Math., 15, 361 (1951) · Zbl 0043.01603
[43] Djokovič, D. Ž., Linear Algebra Appl., 142, 173 (1990) · Zbl 0726.15016 · doi:10.1016/0024-3795(90)90266-f
[44] Kaiser, N., J. Phys. A: Math. Theor., 39, 15287 (2006) · Zbl 1106.81074 · doi:10.1088/0305-4470/39/49/013
[45] Farouki, R. T.; Moon, H. P.; Ravani, B., Geometriae Dedicata, 85, 283 (2001) · Zbl 0987.51012 · doi:10.1023/a:1010318011860
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.