×

On limiting distributions of quantum Markov chains. (English) Zbl 1225.81080

Summary: In a quantum Markov chain, the temporal succession of states is modeled by the repeated action of a “bistochastic quantum operation” on the density matrix of a quantum system. Based on this conceptual framework, we derive some new results concerning the evolution of a quantum system, including its long-term behavior. Among our findings is the fact that the Cesàro limit of any quantum Markov chain always exists and equals the orthogonal projection of the initial state upon the eigenspace of the unit eigenvalue of the bistochastic quantum operation. Moreover, if the unit eigenvalue is the only eigenvalue on the unit circle, then the quantum Markov chain converges in the conventional sense to the said orthogonal projection. As a corollary, we offer a new derivation of the classic result describing limiting distributions of unitary quantum walks on finite graphs [D. Aharonov, A. Ambainis, J. Kempe and U. Vazirani, in: Proc. of the 33rd ACM Symposium of Theory of Computing, ACM, New York, NY, USA, 50–59 (2001)].

MSC:

81S25 Quantum stochastic calculus
60J10 Markov chains (discrete-time Markov processes on discrete state spaces)

References:

[1] D. Aharonov, A. Ambainis, J. Kempe, and U. Vazirani, “Quantum walks on graphs,” in Proceedings of the 33rd ACM Symposium on Theory of Computing, pp. 50-59, ACM, New York, NY, USA, 2001. · Zbl 1323.81020 · doi:10.1145/380752.380758
[2] A. Ambainis, “Quantum walks and their algorithmic applications,” International Journal of Quantum Information, vol. 1, no. 4, pp. 507-518, 2003. · Zbl 1069.81505 · doi:10.1142/S0219749903000383
[3] A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and J. Watrous, “One-dimensional quantum walks,” in Proceedings of the 33d Annual ACM Symposium on Theory of Computing, pp. 37-49, ACM, New York, NY, USA, 2001. · Zbl 1323.81021 · doi:10.1145/380752.380757
[4] A. M. Childs, E. Farhi, and S. Gutmann, “An example of the difference between quantum and classical random walks,” Quantum Information Processing, vol. 1, no. 1-2, pp. 35-43, 2002. · Zbl 1329.82006 · doi:10.1023/A:1019609420309
[5] E. Farhi and S. Gutmann, “Quantum computation and decision trees,” Physical Review A, vol. 58, no. 2, pp. 915-928, 1998. · doi:10.1103/PhysRevA.58.915
[6] J. Kempe, “Quantum random walks-an introductory overview,” Contemporary Physics, vol. 44, no. 4, pp. 307-327, 2003.
[7] V. Kendon, “Decoherence in quantum walks-a review,” Mathematical Structures in Computer Science, vol. 17, no. 6, pp. 1169-1220, 2006. · Zbl 1130.81325 · doi:10.1017/S0960129507006354
[8] N. Konno, “Quantum walks,” in Quantum Potential Theory, U. Franz and M. Schurmann, Eds., vol. 1954 of Lecture Notes in Mathematics, pp. 309-452, Springer, Berlin, Germany, 2008. · Zbl 1165.81318 · doi:10.1142/S0219749908004456
[9] A. Nayak and A. Vishwanath, “Quantum walk on the line,” http://arxiv.org/abs/quant-ph/0010117.
[10] S. E. Venegas-Andraca, Quantum Walks for Computer Scientists, Synthesis Lectures on Quantum Computing, Morgan and Claypool Publishers, 2008.
[11] M. Annabestani, S. J. Akhtarshenas, and M. R. Abolhassani, “Decoherence in a one-dimensional quantum walk,” Physical Review A, vol. 81, no. 3, Article ID 032321, 2010. · Zbl 1342.82119 · doi:10.1103/PhysRevA.81.032321
[12] M. M. Gettrick, “One dimensional quantum walks with memory,” Quantum Information & Computation, vol. 10, no. 5-6, pp. 509-524, 2010. · Zbl 1237.81107
[13] C. Liu and N. Petulante, “One-dimensional quantum random walks with two entangled coins,” Physical Review A, vol. 79, no. 3, Article ID 032312, 2009. · doi:10.1103/PhysRevA.79.032312
[14] Y. Shikano and H. Katsura, “Localization and fractality in inhomogeneous quantum walks with self-duality,” Physical Review E, vol. 82, no. 3, Article ID 031122, 2010. · doi:10.1103/PhysRevE.82.031122
[15] R. Srikanth, S. Banerjee, and C. M. Chandrashekar, “Quantumness in a decoherent quantum walk using measurement-induced disturbance,” Physical Review A, vol. 81, no. 6, Article ID 062123, 2010. · doi:10.1103/PhysRevA.81.062123
[16] A. Ambainis, Limiting Distributions of Quantum Markov Chains- Tutte Seminar, University of Waterloo, Waterloo, Canada, 2005.
[17] C. Meyer, Matrix Analysis and Applied Linear Algebra, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa, USA, 2000. · Zbl 0962.15001
[18] J. Novotný, G. Alber, and I. Jex, “Asymptotic evolution of random unitary operations,” Central European Journal of Physics, vol. 8, no. 6, pp. 1001-1014, 2010. · doi:10.2478/s11534-010-0018-8
[19] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, UK, 2000. · Zbl 1049.81015
[20] D. Petz, Quantum Information Theory and Quantum Statistics, Theoretical and Mathematical Physics, Springer, Berlin, Germany, 2008. · Zbl 1145.81002
[21] M. D. Choi, “Completely positive linear maps on complex matrices,” Linear Algebra and Its Applications, vol. 10, pp. 285-290, 1975. · Zbl 0327.15018 · doi:10.1016/0024-3795(75)90075-0
[22] K. Kraus, States, Effects, and Operations, vol. 190 of Lecture Notes in Physics, Springer-Verlag, Berlin, Germany, 1983. · doi:10.1007/3-540-12732-1
[23] J. Watrous, “Mixing doubly stochastic quantum channels with the completely depolarizing channel,” Quantum Information & Computation, vol. 9, no. 5-6, pp. 406-413, 2009. · Zbl 1172.81322
[24] D. Pérez-García, M. M. Wolf, D. Petz, and M. B. Ruskai, “Contractivity of positive and trace-preserving maps under Lp norms,” Journal of Mathematical Physics, vol. 47, no. 8, Article ID 083506, 5 pages, 2006. · Zbl 1112.15007 · doi:10.1063/1.2218675
[25] W. Bruzda, V. Cappellini, H.-J. Sommers, and K. \DZyczkowski, “Random quantum operations,” Physics Letters A, vol. 373, no. 3, pp. 320-324, 2009. · Zbl 1227.81019 · doi:10.1016/j.physleta.2008.11.043
[26] A. Arias, A. Gheondea, and S. Gudder, “Fixed points of quantum operations,” Journal of Mathematical Physics, vol. 43, no. 12, pp. 5872-5881, 2002. · Zbl 1060.81009 · doi:10.1063/1.1519669
[27] J. A. Holbrook, D. W. Kribs, and R. Laflamme, “Noiseless subsystems and the structure of the commutant in quantum error correction,” Quantum Information Processing, vol. 2, no. 5, pp. 381-419, 2004. · Zbl 1130.94335 · doi:10.1023/B:QINP.0000022737.53723.b4
[28] D. W. Kribs, “Quantum channels, wavelets, dilations and representations of On,” Proceedings of the Edinburgh Mathematical Society. Series II, vol. 46, no. 2, pp. 421-433, 2003. · Zbl 1051.46046 · doi:10.1017/S0013091501000980
[29] M. Sanz, D. Pérez García, M. M. Wolf, and J. I. Cirac, “A quantum version of Wielandts inequality,” IEEE Transactions on Information Theory, vol. 56, no. 9, 2010. · Zbl 1366.81131
[30] C. Liu and N. Petulante, “Quantum walks on the N-cycle subject to decoherence on the coin degree of freedom,” Physical Review E, vol. 81, no. 3, Article ID 031113, 6 pages, 2010. · Zbl 1204.81107 · doi:10.1103/PhysRevE.81.031113
[31] M. M. Wolf, Quantum Channels & Operations Guided Tour, 2010, http://www.nbi.dk/wolf/notes.pdf.
[32] C. Liu and N. Petulante, “On the von Neumann entropy of certain quantum walks subject to decoherence,” Mathematical Structures in Computer Science, vol. 20, no. 6, pp. 1099-1115, 2010. · Zbl 1204.81107 · doi:10.1017/S096012951000040X
[33] C. Liu and N. Petulante, “Asymptotic evolution of quantum walks on the N-cycle subject to decoherence on both the coin and position degreesof freedom,” Physical Review A, vol. 84, no. 1, Article ID 012317, 7 pages, 2011. · doi:10.1103/PhysRevA.84.012317
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.