×

CFIRM: an integrated code package for the low-temperature plasma simulation on structured grids. (English) Zbl 1541.76004

Summary: This paper presents a recently developed full kinetic particle simulation code package, which is a two-dimensional highly integrated and universal framework for low-temperature plasma simulation on both Cartesian and axisymmetric coordinate systems. This code package is named CFIRM, since it is designed based on the continuous Galerkin immersed-finite-element (IFE) particle-in-cell (PIC) model with the polynomial-preserving-recovery (PPR) technique and the Monte-Carlo-collision (MCC) method. Both the traditional and implicit PIC methods were implemented in the package. Incorporating the advantages of all these methods together, the CFIRM code can adopt explicit or implicit PIC schemes to track the motion trajectory of charged particles and deal with the collisions between plasma and neutral gas. Additionally, it can conveniently handle complex interface problems on structured grids. The CFRIM code has excellent versatility in low-temperature plasma simulation and can easily extend to various particle processing modules, such as the variable weights and adaptive particle management algorithms which were incorporated into this code to reduce the memory utilization rate. The implementation for the main algorithms and the overall simulation framework of the CFIRM code package are rigorously described in details. Several simulations of the benchmark cases are carried out to validate the reliability and accuracy of the CFIRM code. Moreover, two typical low-temperature plasma engineering problems are simulated, including a hall thruster and a capacitively coupled plasma reactor, which demonstrates the applicability of this code package.

MSC:

76-04 Software, source code, etc. for problems pertaining to fluid mechanics
35Q70 PDEs in connection with mechanics of particles and systems of particles
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
76X05 Ionized gas flow in electromagnetic fields; plasmic flow

Software:

IFE-PIC; CFIRM; PIFE-PIC
Full Text: DOI

References:

[1] M. A. Lieberman and A. J. Lichtenberg. Principles of Plasma Discharges and Materials Processing. John Wiley & Sons, 2005.
[2] I. Adamovich, S. Agarwal, E. Ahedo, and et al. The 2022 plasma roadmap: low temperature plasma science and technology. J. Phys. D: Appl. Phys., 55(37):373001, 2022.
[3] V. M. Donnelly and A. Kornblit. Plasma etching: yesterday, today, and tomorrow. J. Vac. Sci. Technol. A, 31(5):050825, 2013.
[4] F. Taccogna and L. Garrigues. Latest progress in hall thrusters plasma modelling. Rev. Mod. Plasma Phys., 3(12):1-63, 2019.
[5] J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka. A laserplasma accelerator producing monoenergetic electron beams. Nature, 431(7008):541-544, 2004.
[6] A. Anders. Plasma and ion sources in large area coating: A review. Surf. Coat. Tech., 200(5):1893-1906, 2005.
[7] S. Li, Y. Liu, C. Liu, and Y. Fang. Numerical study of the effect of kinetic damping on resistive wall modes with plasma toroidal rotation in CFETR. Phys. Plasmas, 29(4):042109, 2022.
[8] K. Hara. Non-oscillatory quasineutral fluid model of cross-field discharge plasmas. Phys. Plasmas, 25(12):123508, 2018.
[9] R. E. Heath, I. M. Gamba, P. J. Morrison, and C. Michler. A discontinuous Galerkin method for the Vlasov-Poisson system. J. Comput. Phys., 231(4):1140-1174, 2012. · Zbl 1244.82081
[10] H. Liu, F. Shi, J. Wan, X. He, and Y. Cao. Discrete unified gas kinetic scheme for a re-formulated BGK-Vlasov-Poisson system in all electrostatic plasma regimes. Comput. Phys. Commun., 255:107400, 2020. · Zbl 1523.76085
[11] C.K. Birdsall. Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with neutral atoms, PIC-MCC. IEEE Trans. Plasma Sci., 19(2):65-85, 1991.
[12] C. K. Birdsall and A. B. Langdon. Plasma Physics via Computer Simulation (Series in Plasma Physics). Institute of Physisc Publishing, 1991.
[13] J. Wang, J. Anderson, and J. Polk. Three-dimensional particle simulations of ion optics plasma flow. In 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. AIAA, 1998-3799.
[14] Y. Fu, J. Yang, H. Mou, R. Tan, X. Xia, and Z. Gao. Integrative simulation of a 2 cm electron cyclotron resonance ion source with full particle-in-cell method. Comput. Phys. Commun., 278:108395, 2022.
[15] H. Li and A. Sun. Issues in the numerical modeling of positive ion extraction. Comput. Phys. Commun., 259:107629, 2021.
[16] R. Pan, J. Ren, H. Tang, S. Cao, and J. Cao. Application of the view factor model on the particle-in-cell and Monte Carlo collision code. Phys. Rev. E, 102(3):033311, 2020.
[17] B. I. Cohen, A. B. Langdon, and A. Friedman. Implicit time integration for plasma simulation. J. Comput. Phys., 46:15-38, 1982. · Zbl 0495.76105
[18] A. B. Langdon, B. I. Cohen, and A. Friedman. Direct implicit large time-step particle simu-lation of plasmas. J. Comput. Phys., 51:107-138, 1983. · Zbl 0572.76123
[19] A. Friedman. A second-order implicit particle mover with adjustable damping. J. Comput. Phys., 90:292-312, 1990. · Zbl 0701.76121
[20] H. Y. Wang, W. Jiang, and Y. N. Wang. Implicit and electrostatic particle-in-cell/Monte Car-lo model in two-dimensional and axisymmetric geometry: I. Analysis of numerical techniques. Plasma Sources Sci. Technol., 19(4):045023, 2010.
[21] S. Mattei, K. Nishida, M. Onai, J. Lettry, M. Q. Tran, and A. Hatayama. A fully-implicit Particle-In-Cell Monte Carlo collision code for the simulation of inductively coupled plasmas. J. Comput. Phys., 350:891-906, 2017.
[22] J. Bai, Y. Cao, X. He, and E. Peng. An implicit particle-in-cell model based on anisotropic immersed-finite-element method. Comput. Phys. Commun., 261(6):107655, 2020. · Zbl 1527.76048
[23] Z. Li. The immersed interface method using a finite element formulation. Appl. Numer. Math., 27(3):253-267, 1997. · Zbl 0936.65091
[24] R. E. Ewing, Z. Li, T. Lin, and Y. Lin. The immersed finite volume element methods for the elliptic interface problems. Math. Comput. Simulation, 50(1-4):63-76, 1999. · Zbl 1027.65155
[25] S. Adjerid, I. Babuška, R. Guo, and T. Lin. An enriched immersed finite element method for interface problems with nonhomogeneous jump conditions. Comput. Methods Appl. Mech. Engrg., 404:#115770, 2023. · Zbl 1536.65133
[26] S. Adjerid, T. Lin, and Q. Zhuang. Error estimates for an immersed finite element method for second order hyperbolic equations in inhomogeneous media. J. Sci. Comput., 84(2):1-25, 2020. · Zbl 1452.65220
[27] T. Lin and X. Zhang. Linear and bilinear immersed finite elements for planar elasticity interface problems. J. Comput. Appl. Math., 236(18):4681-4699, 2012. · Zbl 1247.74061
[28] T. Lin, Y. Lin, and X. Zhang. Partially penalized immersed finite element methods for elliptic interface problems. SIAM J. Numer. Anal., 53(2):1121-1144, 2015. · Zbl 1316.65104
[29] R. Guo. Solving parabolic moving interface problems with dynamical immersed spaces on unfitted meshes: Fully discrete analysis. SIAM J. Numer. Anal., 59(2):797-828, 2021. · Zbl 1466.65134
[30] R. Guo and T. Lin. A higher degree immersed finite element method based on a Cauchy extension for elliptic interface problems. SIAM J. Numer. Anal., 57(4):1545-1573, 2019. · Zbl 1420.65122
[31] R. Guo and X. Zhang. Solving three-dimensional interface problems with immersed finite elements: A-priori error analysis. J. Comput. Phys., 441:#110445, 2021. · Zbl 07513824
[32] C. He, S. Zhang, and X. Zhang. Error analysis of Petrov-Galerkin immersed finite element methods. Comput. Methods Appl. Mech. Engrg., 404:#115744, 2023. · Zbl 1536.65144
[33] H. Ji, F. Wang, J. Chen, and Z. Li. A new parameter free partially penalized immersed finite element and the optimal convergence analysis. Numer. Math., 150:1035-1086, 2022. · Zbl 1492.65313
[34] X.-M. He, T. Lin, Y. Lin, and X. Zhang. Immersed finite element methods for parabolic equations with moving interface. Numer. Methods Partial Differential Equations, 29(2):619-646, 2013. · Zbl 1266.65165
[35] Y. Chu, Y. Cao, X.-M. He, and M. Luo. Asymptotic boundary conditions with immersed finite elements for interface magnetostatic/electrostatic field problems with open boundary. Comput. Phys. Commun., 182(11):2331-2338, 2011. · Zbl 1308.78006
[36] Y. Cao, Y. Chu, X. Zhang, and X. Zhang. Immersed finite element methods for unbounded interface problems with periodic structures. J. Comput. Appl. Math., 307(1):72-81, 2016. · Zbl 1382.78017
[37] C. Lu, Z. Yang, J. Bai, Y. Cao, and X.-M. He. Three-dimensional immersed finite element method for anisotropic magnetostatic/electrostatic interface problems with non-homogeneous flux jump. Int. J. Numer. Meth. Eng., 121(10):2107-2127, 2020. · Zbl 07843285
[38] J. Wang, X. Zhang, and Q. Zhuang. An immersed Crouzeix-Raviart finite element method for Navier-Stokes equations with moving interfaces. Int. J. Numer. Anal. Mod., 19:563-586, 2022. · Zbl 1513.65470
[39] Y. Chen, Z. Deng, and Y. Huang. Recovery-based a posteriori error estimation for elliptic interface problems based on partially penalized immersed finite element methods. Int. J. Numer. Anal. Mod., 19:126-155, 2022. · Zbl 1499.35730
[40] R. Kafafy. Immersed finite element Particle-In-Cell simulations of ion propulsion. Ph.D. dissertation, Virginia Polytechnic Institute and State University, 2005.
[41] R. Kafafy, T. Lin, Y. Lin, and J. Wang. Three-dimensional immersed finite element methods for electric field simulation in composite materials. Int. J. Numer. Meth. Eng., 64(7):940-972, 2005. · Zbl 1122.78018
[42] R. Kafafy, J. Wang, and T. Lin. A hybrid-grid immersed-finite-element particle-in-cell sim-ulation model of ion optics plasma dynamics. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 12:1-16, 2005.
[43] Y. Cao, Y. Chu, X.-M. He, and T. Lin. An iterative immersed finite element method for an electric potential interface problem based on given surface electric quantity. J. Comput. Phys., 281:82-95, 2015. · Zbl 1351.78045
[44] Y. Chu, D. Han, Y. Cao, X. He, and J. Wang. An immersed-finite-element particle-in-cell simulation tool for plasma surface interaction. Int. J. Numer. Anal. Model., 14(2):175-200, 2017. · Zbl 1365.76112
[45] H. J. Cao, Y. Cao, Y. C. Chu, X.-M. He, and T. Lin. A huygens immersed-finite-element particle-in-cell method for modeling plasma-surface interactions with moving interface. Com-mun. Nonlinear Sci. Numer. Simul., 59:132-148, 2018. · Zbl 1524.35666
[46] D. Han, J. Wang, and X.-M. He. PIFE-PIC: A 3-D parallel immersed finite element particle-in-cell framework for plasma simulations, #AIAA-2018-2196. Proceeding of 2018 AIAA Aerospace Sciences Meeting, Kissimmee, Florida, January 8-12, 2018.
[47] H. Cao, Y. Chu, E. Wang, Y. Cao, and G. Xia. Numerical simulation study on barrel erosion of ion thruster accelerator grid. J. Propul. Power, 31(6):1785-1792, 2015.
[48] H. Cao, Q. Li, K. Shan, Y. Cao, and L. Zheng. Effect of preionization on the erosion of the discharge channel wall in a hall thruster using a kinetic simulation. IEEE Trans. Plasma Sci., 43(1):130-140, 2015.
[49] H. Jian, Y. Chu, H. Cao, Y. Cao, X.-M. He, and G. Xia. Three-dimensional IFE-PIC numer-ical simulation of background pressure’s effect on accelerator grid impingement current for ion optics. Vacuum, 116:130-138, 2015.
[50] C. Lu, J. Wan, Y. Cao, and X. He. A fully decoupled iterative method with three-dimensional anisotropic immersed finite elements for kaufman-type discharge problems. Comput. Method. Appl. M., 372:113345, 2020. · Zbl 1506.65010
[51] C. Lu, Z. Yang, J. Bai, Y. Cao, and X. He. Three-dimensional immersed finite-element method for anisotropic magnetostatic/electrostatic interface problems with nonhomogeneous flux jump. Int. J. Numer. Meth. Eng., 121(10):2107-2127, 2020. · Zbl 07843285
[52] L. Quan, Y. Cao, Y. Li, H. Liu, and B. Tian. Influence of the axial oscillations on the electron cyclotron drift instability and electron transport in Hall thrusters. Phys. Plasmas, 30(4):043510, 2023.
[53] Y. Han, G. Xia, C. Lu, and X. He. Trilinear immersed-finite-element method for three-dimensional anisotropic interface problems in plasma thrusters. AIAA J., 2023.
[54] J. Bai, Y. Cao, X.-M. He, H. Liu, and X. Yang. Modeling and an immersed finite element method for an interface wave equation. Comput. Math. Appl., 76(7):1625-1638, 2018. · Zbl 1434.65172
[55] J. Bai, Y. Cao, Y. Li, K. Wang, B. Tian, and Y. Hu. Numerical study of the radio-frequency biased accelerating system in ion thrusters. Plasma Sci. Technol., 25(8):085502, 2023.
[56] C. Lu, J. Wan, Y. Cao, and X.-M. He. A fully decoupled iterative method with three-dimensional anisotropic immersed finite elements for Kaufman-type discharge problems. Comput. Meth. Appl. Mech. Eng., 372:#113345, 2020. · Zbl 1506.65010
[57] D. Depew, D. Han, J. Wang, X.-M. He, and T. Lin. Immersed-Finite-Element Particle-In-Cell simulations of lunar surface charging, #199. Proceedings of the 13th Spacecraft Charging Technology Conference, Pasadena, California, June 23-27, 2014.
[58] D. Han, P. Wang, X.-M. He, T. Lin, and J. Wang. A 3D immersed finite element method with non-homogeneous interface flux jump for applications in particle-in-cell simulations of plasma-lunar surface interactions. J. Comput. Phys., 321:965-980, 2016. · Zbl 1349.76212
[59] D. Han, J. Wang, and X.-M. He. A non-homogeneous immersed-finite-element particle-in-cell method for modeling dielectric surface charging in plasmas. IEEE Trans. Plasma Sci., 44(8):1326-1332, 2016.
[60] D. Han, J. Wang, and X.-M. He. Immersed-finite-element particle-in-cell simulations of plas-ma charging at lunar terminator. J. Spacecr. Rockets, 55(6):1490-1497, 2018.
[61] D. Han, X. He, D. Lund, and X. Zhang. PIFE-PIC: parallel immersed finite element particle-in-cell for 3-D kinetic simulations of plasma-material interactions. SIAM J. Sci. Comput., 43(3):C235-C257, 2021. · Zbl 1483.65199
[62] J. Zhao, X. Wei, X. Du, X. He, and D. Han. Photoelectron sheath and plasma charging on the lunar surface: semianalytic solutions and fully-kinetic particle-in-cell simulations. IEEE Trans. Plasma Sci., 49(10):3036-3050, 2021.
[63] D. Lund, X. He, X. Zhang, and D. Han. Weak scaling of the parallel immersed-finite-element particle-in-cell (PIFE-PIC) framework with lunar plasma charging simulations. Comput. Part. Mech., 9(6):1279-1291, 2022.
[64] J. Wang, X.-M. He, and Y. Cao. Modeling spacecraft charging and charged dust particle interactions on lunar surface. Proceedings of the 10th Spacecraft Charging Technology Con-ference, Biarritz, France, 2007.
[65] D. Lund, X.-M. He, X. Zhang, and D. Han. Weak scaling of the parallel immersed finite ele-ment particle-in-cell (PIFE-PIC) framework with lunar plasma charging simulations. Com-put. Part. Mech., 9:1279-1291, 2022.
[66] D. Lund, X.-M. He, and D. Han. Charging of irregularly-shaped dust grains near surfaces in space, #AIAA 2023-2616. AIAA SciTech 2023 Forum, National Harbor, Maryland & Virtual Conference, January 23-27, 2023.
[67] D. Lund, X.-M. He, and D. Han. Kinetic particle simulations of plasma charging at lunar craters under severe conditions. J. Spacecraft Rockets, 60(4):1176-1187, 2023.
[68] A. Naga and Z. Zhang. The polynomial-preserving recovery for higher order finite element methods in 2D and 3D. Discrete Contin. Dyn. Syst. -Ser. B, 5(3):769-798, 2005. · Zbl 1078.65108
[69] L. Song and Z. Zhang. Polynomial preserving recovery of an over-penalized symmetric in-terior penalty Galerkin method for elliptic problems. Discrete Contin. Dyn. Syst. -Ser. B, 20(5):1405-1426, 2015. · Zbl 1334.65185
[70] H. Guo, Z. Zhang, R. Zhao, and Q. Zou. Polynomial preserving recovery on boundary. J. Comput. Appl. Math., 307:119-133, 2016. · Zbl 1338.65260
[71] H. Guo and X. Yang. Gradient recovery for elliptic interface problem: II. Immersed finite element methods. J. Comput. Phys., 338:606-619, 2017. · Zbl 1415.65256
[72] R. Zhao, W. Du, F. Shi, and Y. Cao. Recovery based finite difference scheme on unstructured mesh. Appl. Math. Lett., 129:107935, 2022. · Zbl 1492.65289
[73] J. Bai, Y. Cao, Y. Chu, and X. Zhang. An improved immersed finite element particle-in-cell method for plasma simulation. Comput. Math. Appl., 75(6):1887-1899, 2018. · Zbl 1409.82018
[74] T. Lin, Y. Lin, R. C. Rogers, and L. M. Ryan. A rectangular immersed finite element method for interface problems. In P. Minev and Y. Lin, editors, Advances in Computation: Theory and Practice, Vol. 7, pages 107-114. Nova Science Publishers, Inc., 2001. · Zbl 1019.65092
[75] X.-M. He. Bilinear immersed finite elements for interface problems. Ph.D. Dissertation, Virginia Polytechnic Institute and State University, 2009.
[76] X.-M. He, T. Lin, and Y. Lin. Approximation capability of a bilinear immersed finite element space. Numer. Methods Partial Differential Equations, 24(5):1265-1300, 2008. · Zbl 1154.65090
[77] X.-M. He, T. Lin, and Y. Lin. A bilinear immersed finite volume element method for the diffusion equation with discontinuous coefficients, dedicated to Richard E. Ewing on the occasion of his 60th birthday. Commun. Comput. Phys., 6(1):185-202, 2009. · Zbl 1364.65225
[78] X.-M. He, T. Lin, and Y. Lin. Interior penalty bilinear IFE discontinuous Galerkin meth-ods for elliptic equations with discontinuous coefficient, dedicated to David Russell’s 70th birthday. J. Syst. Sci. Complex., 23(3):467-483, 2010. · Zbl 1205.35010
[79] X.-M. He, T. Lin, and Y. Lin. The convergence of the bilinear and linear immersed finite element solutions to interface problems. Numer. Methods Partial Differential Equations, 28(1):312-330, 2012. · Zbl 1241.65090
[80] X.-M. He, T. Lin, and Y. Lin. A selective immersed discontinuous Galerkin method for elliptic interface problems. Math. Methods Appl. Sci., 37(7):983-1002, 2014. · Zbl 1292.65126
[81] X.-M. He, T. Lin, and Y. Lin. Immersed finite element methods for elliptic interface problems with non-homogeneous jump conditions. Int. J. Numer. Anal. Model., 8(2):284-301, 2011. · Zbl 1211.65155
[82] W. Feng, X.-M. He, Y. Lin, and X. Zhang. Immersed finite element method for interface problems with algebraic multigrid solver. Commun. Comput. Phys., 15(4):1045-1067, 2014. · Zbl 1388.65177
[83] M. J. Kushner. Mechanisms for power deposition in Ar/SiH4 capacitively coupled RF dis-charges. IEEE Trans. Plasma Sci., 14(2):188-196, 1986.
[84] D. Vender and R.W. Boswell. Numerical modeling of low-pressure RF plasmas. IEEE Trans. Plasma Sci., 18(4):725-732, 1990.
[85] V. Vahedi and M. Surendra. A Monte Carlo collision model for the particle-in-cell method: applications to argon and oxygen discharges. Comput. Phys. Commun., 87:179-198, 1995.
[86] K. Nanbu, T. Morimoto, and M. Suetani. Direct simulation Monte Carlo analysis of flows and etch rate in an inductively coupled plasma reactor. IEEE Trans. Plasma Sci., 27(5):1379-1388, 1999.
[87] K. Nanbu. Probability theory of electron-molecule, ion-molecule, molecule-molecule, and coulomb collisions for particle modeling of materials processing plasmas and cases. IEEE Trans. Plasma Sci., 28(3):971-990, 2000.
[88] G. Lapenta. Particle rezoning for multidimensional kinetic particle-in-cell simulations. J. Comput. Phys., 181(1):317-337, 2002. · Zbl 1178.76294
[89] W. Villafana, F. Petronio, A. C. Denig, M. J. Jimenez, D. Eremin, L. Garrigues, and O. Ver-morel. 2D radial-azimuthal particle-in-cell benchmark for E × B discharges. Plasma Sources. Sci. Technol., 30(7):075002, 2021.
[90] T. Charoy, J. P. Boeuf, A. Bourdon, J. A. Carlsson, P. Chabert, B. Cuenot, and W. Villafana. 2D axial-azimuthal particle-in-cell benchmark for low-temperature partially magnetized plas-mas. Plasma Sources. Sci. Technol., 28(10):105010, 2019.
[91] School of Science, Harbin Institute of Technology(Shenzhen), Shenzhen, Guangdong 518055, P. R. China; Center for Advanced Material Diagnostic Technology, College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, P. R. China E-mail: baijinwei@stu.hit.edu.cn and baijinwei@sztu.edu.cn Department of Mathematics, Center for Mathematical Plasma Astrophysics, KU Leuven, Leu-ven, 3001, Belgium E-mail: hongtao.liu@kuleuven.be Department of Mathematics & Statistics, Missouri University of Science & Technology, Rolla, MO 65401, USA E-mail: hex@mst.edu School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China E-mail: weijiang@hust.edu.cn Department of Mechanical Engineering & Automation, Harbin Institute of Technology(Shenzhen), Shenzhen, Guangdong 518055, P. R. China E-mail: yongc@hit.edu.cn
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.