×

Three-dimensional immersed finite-element method for anisotropic magnetostatic/electrostatic interface problems with nonhomogeneous flux jump. (English) Zbl 07843285

Summary: Anisotropic diffusion is important to many different types of common materials and media. Based on structured Cartesian meshes, we develop a three-dimensional (3D) nonhomogeneous immersed finite-element (IFE) method for the interface problem of anisotropic diffusion, which is characterized by an anisotropic elliptic equation with discontinuous tensor coefficient and nonhomogeneous flux jump. We first construct the 3D linear IFE space for the anisotropic nonhomogeneous jump conditions. Then we present the IFE Galerkin method for the anisotropic elliptic equation. Since this method can efficiently solve interface problems on structured Cartesian meshes, it provides a promising tool to solve the physical models with complex geometries of different materials, hence can serve as an efficient field solver in a simulation on Cartesian meshes for related problems, such as the particle-in-cell simulation. Numerical examples are provided to demonstrate the features of the proposed method.
{© 2019 John Wiley & Sons, Ltd.}

MSC:

65Nxx Numerical methods for partial differential equations, boundary value problems
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
65Lxx Numerical methods for ordinary differential equations
Full Text: DOI

References:

[1] PolcarP, MayerD. Investigation of field induced magnetic anisotropy in ferromagnetic liquids. Paper presented at: 2016 ELEKTRO; IEEE; 2016:565‐568.
[2] LiJ, OudrissA, MetsueA, BouhattateJ, FeaugasX. Anisotropy of hydrogen diffusion in nickel single crystals: the effects of self‐stress and hydrogen concentration on diffusion. Sci Rep. 2017;7:45041.
[3] HosseiniK, AtlasbafZ. Unconditionally stable LOD‐FDTD method in anisotropic magnetized plasma. IEEE Microw Wirel Co Lett. 2017;27(3):212‐214.
[4] GregoryGH. The inherently three‐dimensional nature of magnetized plasma turbulence. Aust J Plant Physiol. 2015;81(2):19.
[5] PaoloF, GianniG. Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. MATH MOD METH APPL S. 1997;7(07):957‐991. · Zbl 0910.35123
[6] WannamakerPE. Anisotropy versus heterogeneity in continental solid earth electromagnetic studies: fundamental response characteristics and implications for physicochemical state. Surv Geophys. 2005;26(6):733‐765.
[7] LiY, PekJ. Adaptive finite element modelling of two‐dimensional magnetotelluric fields in general anisotropic media. Geophys J Int. 2008;175(3):942‐954.
[8] CichockiF, Domıćnguez‐VázquezA, MerinoM, AhedoE. Hybrid 3D model for the interaction of plasma thruster plumes with nearby objects. Plasma Sources Sci T. 2017;26(12):125008.
[9] IoannisGM, KatzI. Numerical simulations of Hall‐effect plasma accelerators on a magnetic‐field‐aligned mesh. Phys Rev E. 2012;86(17):046703.
[10] AndreussiT, GiannettiV, LeporiniA, SaraviaMM, AndrenucciM. Influence of the magnetic field configuration on the plasma flow in Hall thrusters. Plasma Phys Contr F. 2017;60(1):09.
[11] WirzR, KatzI. 2‐D discharge chamber model for ion thrusters. Paper presented at: 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit; 11‐14, July, 2004:4107‐4125; Fort Lauderdale, Florida.
[12] WirzR, KatzI. Plasma processes of DC ion thruster discharge chambers. Paper presented at: 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit; 10‐13, July, 2005:3690‐3175; Tucson, Arizona.
[13] KomurasakiK, ArakawaY. Two dimensional numerical model of plasma flow in a Hall thruster. J Propel Power. 1995;11(6):1317‐1323.
[14] BabuškaI. The finite element method for elliptic equations with discontinuous coefficients. Computing. 1970;5:207‐213. · Zbl 0199.50603
[15] BrambleJH, KingJT. A finite element method for interface problems in domains with smooth boundary and interfaces. Adv Comput Math. 1996;6:109‐138. · Zbl 0868.65081
[16] ChenZ, ZouJ. Finite element methods and their convergence for elliptic and parabolic interface problems. Numer Math. 1998;79:175‐202. · Zbl 0909.65085
[17] AdjeridS, ChaabaneN, LinT. An immersed discontinuous finite element method for Stokes interface problems. Comput Methods Appl Mech Eng. 2015;293:170‐190. · Zbl 1423.76200
[18] ChouS. An immersed linear finite element method with interface flux capturing recovery. Discrete Contin Dyn Syst Ser B. 2012;17(7):2343‐2357. · Zbl 1262.65168
[19] GongY, LiB, LiZ. Immersed‐interface finite‐element methods for elliptic interface problems with non‐homogeneous jump conditions. SIAM J Numer Anal. 2008;46:472‐495. · Zbl 1160.65061
[20] GongY, LiZ. Immersed interface finite element methods for elasticity interface problems with non‐homogeneous jump conditions. Numer Math Theory Methods Appl. 2010;3(1):23‐39. · Zbl 1224.65266
[21] HeX‐M, LinT, LinY. Immersed finite element methods for elliptic interface problems with non‐homogeneous jump conditions. Int J Numer Anal Model. 2011;8(2):284‐301. · Zbl 1211.65155
[22] JiH, ChenJ, LiZ. A symmetric and consistent immersed finite element method for interface problems. J Sci Comput. 2014;61(3):533‐557. · Zbl 1308.65198
[23] LiZ. The immersed interface method using a finite element formulation. Appl Numer Math. 1997;27(3):253‐267. · Zbl 0936.65091
[24] LinT, SheenD, ZhangX. A locking‐free immersed finite element method for planar elasticity interface problems. J Comput Phys. 2013;247:228‐247. · Zbl 1349.74328
[25] LinT, YangQ, ZhangX. Partially penalized immersed finite element methods for parabolic interface problems. Numer Meth Part D E. 2015;31(6):1925‐1947. · Zbl 1334.65157
[26] LinT, ZhangX. Linear and bilinear immersed finite elements for planar elasticity interface problems. J Comput Appl Math. 2012;236(18):4681‐4699. · Zbl 1247.74061
[27] PreusserT, RumpfM, SauterS, SchwenLO. 3D composite finite elements for elliptic boundary value problems with discontinuous coefficients. SIAM J Sci Comput. 2011;33(5):2115‐2143. · Zbl 1237.65129
[28] QinF, ChenJ, LiZ, CaiM. A Cartesian grid nonconforming immersed finite element method for planar elasticity interface problems. Comput Math Appl. 2017;73(3):404‐418. · Zbl 1368.74065
[29] SauterSA, WarnkeR. Composite finite elements for elliptic boundary value problems with discontinuous coefficients. Computing. 2006;77(1):29‐55. · Zbl 1284.65173
[30] VallaghèS, PapadopouloT. A trilinear immersed finite element method for solving the electroencephalography forward problem. SIAM J Sci Comput. 2010;32(4):2379‐2394. · Zbl 1214.92046
[31] ZhuangQ, GuoR. High degree discontinuous Petrov-Galerkin immersed finite element methods using fictitious elements for elliptic interface problems. J Comput Appl Math. 2019;362:560‐573. · Zbl 1422.65424
[32] AdjeridS, Ben‐RomdhaneM, LinT. Higher degree immersed finite element methods for second‐order elliptic interface problems. Int J Numer Anal Model. 2014;11(3):541‐566. · Zbl 1499.65639
[33] AdjeridS, GuoR, LinT. High degree immersed finite element spaces by a least squares method. Int J Numer Anal Model. 2017;14(4‐5):604‐626. · Zbl 1429.65291
[34] AdjeridS, LinT. p‐th degree immersed finite element for boundary value problems with discontinuous coefficients. Appl Numer Math. 2009;59(6):1303‐1321. · Zbl 1177.65118
[35] CampB, LinT, LinY, SunW. Quadratic immersed finite element spaces and their approximation capabilities. Adv Comput Math. 2006;24(1‐4):81‐112. · Zbl 1095.65102
[36] GuoR, LinT. A group of immersed finite‐element spaces for elliptic interface problems. IMA J Numer Anal. 2019;39(1):482‐511. · Zbl 1483.65184
[37] GuoR, LinT, ZhangX. Nonconforming immersed finite element spaces for elliptic interface problems. Comput Math Appl. 2018;75(6):2002‐2016. · Zbl 1409.82015
[38] HeXM. Bilinear immersed finite elements for interface problems [Ph.D. dissertation]. Virginia Polytechnic Institute and State University, 2009.
[39] KafafyR, LinT, LinY, WangJ. Three‐dimensional immersed finite element methods for electric field simulation in composite materials. Int J Numer Meth Engg. 2005;64(7):940‐972. · Zbl 1122.78018
[40] KwakD, JinS, KyeongD. A stabilized P1‐nonconforming immersed finite element method for the interface elasticity problems. ESAIM Math Model Numer Anal. 2017;51(1):187‐207. · Zbl 1381.74199
[41] LiZ, LinT, WuX. New Cartesian grid methods for interface problems using the finite element formulation. Numer Math. 2003;96(1):61‐98. · Zbl 1055.65130
[42] LinT, LinY, RogersRC, RyanLM. A rectangular immersed finite element method for interface problems. In: MinevP (ed.), LinY (ed.), eds. Advances in Computation: Theory and Practice. Vol 7. Huntington, NY: Nova Science Publishers Inc; 2001:107‐114. · Zbl 1019.65092
[43] WangC, SunP, LiZ. An iterative approach for constructing immersed finite element spaces and applications to interface problems. Int J Numer Anal Model. 2019;16(2):167‐191. · Zbl 1408.65090
[44] BaiJ, CaoY, HeX‐M, LiuH, YangX. Modeling and an immersed finite element method for an interface wave equation. Comput Math Appl. 2018;76(7):1625‐1638. · Zbl 1434.65172
[45] ChuY, HanD, CaoY, HeX‐M, WangJ. An immersed‐finite‐element particle‐in‐cell simulation tool for plasma surface interaction. Int J Numer Anal Model. 2017;14(2):175‐200. · Zbl 1365.76112
[46] FengW, HeX‐M, LinY, ZhangX. Immersed finite element method for interface problems with algebraic multigrid solver. Commun Comput Phys. 2014;15(4):1045‐1067. · Zbl 1388.65177
[47] HanD, WangJ, HeXM. PIFE‐PIC: a 3‐D parallel immersed finite element particle‐in‐cell framework for plasma simulations. Paper presented at: Proceeding of 2018 AIAA Aerospace Sciences Meeting; #AIAA‐2018‐2196, January 8‐12, 2018; Kissimmee, Florida.
[48] HeX‐M, LinT, LinY. Interior penalty bilinear IFE discontinuous Galerkin methods for elliptic equations with discontinuous coefficient, dedicated to David Russell’s 70th birthday. J Syst Sci Complex. 2010;23(3):467‐483. · Zbl 1205.35010
[49] HeX‐M, LinT, LinY. A selective immersed discontinuous Galerkin method for elliptic interface problems. Math Methods Appl Sci. 2014;37(7):983‐1002. · Zbl 1292.65126
[50] LinT, YangQ, ZhangX. A priori error estimates for some discontinuous Galerkin immersed finite element methods. J Sci Comput. 2015;65(3):875‐894. · Zbl 1331.65154
[51] EwingRE, LiZ, LinT, LinY. The immersed finite volume element methods for the elliptic interface problems. Modelling ’98 (prague) Math Comput Simulation. 1999;50(1‐4):63‐76. · Zbl 1027.65155
[52] HeX‐M, LinT, LinY. A bilinear immersed finite volume element method for the diffusion equation with discontinuous coefficients, dedicated to Richard E. Ewing on the occasion of his 60th birthday. Commun Comput Phys. 2009;6(1):185‐202. · Zbl 1364.65225
[53] CaoW, ZhangX, ZhangZ. Superconvergence of immersed finite element methods for interface problems. J Sci Comput. 2017;43(4):795‐821. · Zbl 1380.65365
[54] GuoR, LinT, LinY. Approximation capabilities of immersed finite element spaces for elasticity interface problems. Numer Meth Part D E. 2019;35(3):1243‐1268. · Zbl 1418.65174
[55] GuoR, LinT, ZhuangQ. Improved error estimation for the partially penalized immersed finite element methods for elliptic interface problems. Int J Numer Anal Model. 2019;16:575‐589. · Zbl 1427.65361
[56] HeX‐M, LinT, LinY. Approximation capability of a bilinear immersed finite element space. Numer Meth Part D E. 2008;24(5):1265‐1300. · Zbl 1154.65090
[57] HeX‐M, LinT, LinY. The convergence of the bilinear and linear immersed finite element solutions to interface problems. Numer Meth Part D E. 2012;28(1):312‐330. · Zbl 1241.65090
[58] LinM, LinT, ZhangH. Error analysis of an immersed finite element method for Euler‐Bernoulli beam interface problems. Int J Numer Anal Model. 2017;14(6):822‐841. · Zbl 1375.74088
[59] LiZ, LinT, LinY, RogersRC. An immersed finite element space and its approximation capability. Numer Meth Part D E. 2004;20(3):338‐367. · Zbl 1057.65085
[60] LinT, LinY, ZhangX. Partially penalized immersed finite element methods for elliptic interface problems. SIAM J Numer Anal. 2015;53(2):1121‐1144. · Zbl 1316.65104
[61] ZhangX. Nonconforming immersed finite element methods for interface problems [Ph.D. dissertation]. Virginia Polytechnic Institute and State University, 2013.
[62] BaiJ, CaoY, ChuY, ZhangX. An improved immersed finte element particle‐in‐cell method for plasma simulation. Comput Math Appl. 2018;75(6):1887‐1899. · Zbl 1409.82018
[63] CaoH, ChuY, WangE, CaoY, ZhangZ. Numerical simulation study on barrel erosion of ion thruster accelerator grid. J Propuls Power. 2015;31(6):1‐8.
[64] DepewD, HanD, WangJ, HeXM, LinT. Immersed‐finite‐element particle‐in‐cell simulations of lunar surface charging. Paper presented at: Proceedings of the 13th Spacecraft Charging Technology Conference; #199, June 23‐27, 2014; Pasadena, California, .
[65] HanD, WangJ, HeX‐M. A non‐homogeneous immersed‐finite‐element particle‐in‐cell method for modeling dielectric surface charging in plasmas. IEEE Trans Plasma Sci. 2016;44(8):1326‐1332.
[66] HanD, WangJ, HeX‐M. Immersed‐finite‐element particle‐in‐cell simulations of plasma charging at lunar terminator. J Spacecr Rocket. 2018;55(6):1490‐1497.
[67] HanD, WangP, HeX‐M, LinT, WangJ. A 3D immersed finite element method with non‐homogeneous interface flux jump for applications in particle‐in‐cell simulations of plasma‐lunar surface interactions. J Comput Phys. 2016;321:965‐980. · Zbl 1349.76212
[68] JianH, ChuY, CaoH, CaoY, HeX‐M, XiaG. Three‐dimensional IFE‐PIC numerical simulation of background pressure’s effect on accelerator grid impingement current for ion optics. Vacuum. 2015;116:130‐138.
[69] KafafyR. Immersed finite element particle‐in‐cell simulations of ion propulsion [Ph.D. dissertation]. Virginia Polytechnic Institute and State University, 2005.
[70] WangJ, HeXM, CaoY. Modeling spacecraft charging and charged dust particle interactions on lunar surface. Paper presented at: Proceedings of the 10th Spacecraft Charging Technology Conference; Biarritz, France, 2007.
[71] WangJ, HeX‐M, CaoY. Modeling electrostatic levitation of dusts on lunar surface. IEEE Trans Plasma Sci. 2008;36(5):2459‐2466.
[72] WangP. Immersed finite element particle‐in‐cell modeling of surface charging in rarefied plasmas [Ph.D. dissertation]. Virginia Polytechnic Institute and State University, 2010.
[73] ZhuL, ZhangZ, LiZ. An immersed finite volume element method for 2D PDEs with discontinuous coefficients and non‐homogeneous jump conditions. Comput Math Appl. 2015;70(2):89‐103. · Zbl 1443.65293
[74] LuC, QiuP, CaoY, ZhangTP, ChenJJ. A 3d particle model for the plume cex simulation. The Aero J. 2018;91(8):1‐17.
[75] LuC, ZhangTP, QiuP, ChenJJ, ZhengL, CaoY. Barrel erosion of ion thruster accelerator grid under different operating conditions. IEEE T Plasma Sci. 2018;10(99):1‐13.
[76] LuC, ZhaoY, WanJ, ChuY, ZhengL, CaoY. Influence of the decelerator grid on the optical performance of the ion thruster. Int J Aerosp Eng. 2019;33(1):1‐17.
[77] ChuY, CaoY, HeX‐M, LuoM. Asymptotic boundary conditions with immersed finite elements for interface magnetostatic/electrostatic field problems with open boundary. Comput Phys Commun. 2011;182(11):2331‐2338. · Zbl 1308.78006
[78] CaoY, ChuY, ZhangXS, ZhangX. Immersed finite element methods for unbounded interface problems with periodic structures. J Comput Appl Math. 2016;307:72‐81. · Zbl 1382.78017
[79] HeX‐M, LinT, LinY, ZhangX. Immersed finite element methods for parabolic equations with moving interface. Numer Meth Part D E. 2013;29(2):619‐646. · Zbl 1266.65165
[80] CaoH, CaoY, ChuY, HeX‐M, LinT. A Huygens immersed‐finite‐element particle‐in‐cell method for modeling plasma‐surface interactions with moving interface. Commun Nonlinear Sci Numer Simul. 2018;59:132‐148. · Zbl 1524.35666
[81] LinT, LinY, ZhangX. A method of lines based on immersed finite elements for parabolic moving interface problems. Adv Appl Math Mech. 2013;5(4):548‐568.
[82] LinT, LinY, ZhangX. Immersed finite element method of lines for moving interface problems with nonhomogeneous flux jump. Contemp Math. 2013;586:257‐265. · Zbl 1280.65100
[83] CaoY, ChuY, HeX‐M, LinT. An iterative immersed finite element method for an electric potential interface problem based on given surface electric quantity. J Comput Phys. 2015;281:82‐95. · Zbl 1351.78045
[84] GuoR. Design, analysis, and applicationof immersed finite element methods [Ph.D. dissertation] Virginia Polytechnic Institute and State University, 2019.
[85] GuoR, LinT, LinY. A fixed mesh method with immersed finite elements for solving interface inverse problems. J Sci Comput. 2019;79(1):148‐175. · Zbl 1458.74135
[86] GuoH, YangX. Gradient recovery for elliptic interface problem: II. Immersed finite element methods. J Comput Phys. 2017;338:606‐619. · Zbl 1415.65256
[87] ZhangQ, ItoK, LiZ, ZhangZ. Immersed finite elements for optimal control problems of elliptic PDEs with interfaces. J Comput Phys. 2015;298:305‐319. · Zbl 1349.65638
[88] ZhangH, LinT, LinY. Linear and quadratic immersed finite element methods for the multi‐layer porous wall model for coronary drug‐eluting stents. Int J Numer Anal Model. 2018;15:48‐73. · Zbl 1406.76054
[89] LiebermanMA, LichtenbergAJ. Principles of plasma discharges and materials processing. 2nd ed.Hoboken, NJ: John Wiley & Sons; 2005.
[90] FredricksRW, MastrupF. Ambipolar diffusion of a plasma in a weak magnetic field. Phys Fluids. 1963;6(1):36‐39. · Zbl 0108.22901
[91] AndersA, YushkovGY. Ion flux from vacuum arc cathode spots in the absence and presence of a magnetic field. J Appl Phys. 2002;91(8):4824‐4832.
[92] BriedaL, Sen ZhuangT, KeidarM. Near Plume Modeling of a Micro Cathode arc Thruster. Washington, DC: The George Washington University; 2013.
[93] PolkJE, SekerakMJ, ZiemerJK, ScheinJ, QiN, AndersA. A theoretical analysis of vacuum arc thruster and vacuum arc ion thruster performance. IEEE T Plasma Sci. 2008;36(5):2167‐2179.
[94] BykovN, GorbachevY. Cluster formation in copper vapor jet expanding into vacuum: the direct simulation Monte Carlo. Vacuum. 2019;163:119‐127.
[95] PitchfordLC, AlvesLL, BartschatK, et al. LXCat: an open‐access, web‐based platform for data needed for modeling low temperature plasmas. Plasma Process Polym. 2017;14:1600098.
[96] BoxmanRL, SandersD, MartinPJ. Handbook of vacuum arc science and technology: fundamentals and applications. Geochim Cosmochim Ac. 1996;46(11):2039‐2047.
[97] AndersA, GeorgeYY. Ion flux from vacuum arc cathode spots in the absence and presence of a magnetic field. J Appl Phys. 2002;91:4824‐4832.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.