×

A fully decoupled iterative method with three-dimensional anisotropic immersed finite elements for Kaufman-type discharge problems. (English) Zbl 1506.65010

Summary: In order to simulate the Kaufman-type discharge problems, a fully decoupled iterative method with anisotropic immersed finite elements on Cartesian meshes is proposed, especially for a three-dimensional (3D) non-axisymmetric anisotropic hybrid model which is more difficult than the axisymmetric or isotropic models. The classical hybrid model, which describes the important plasma distribution of the Kaufman-type discharge problems, couples several difficult equations together to form a large scale system. The 3D non-axisymmetric and anisotropic properties will further increase the complexity of this system. Hence it generally needs to be solved in the decoupled way for significantly reducing the computational cost. Based on the Particle-in-Cell Monte Carlo collision (PIC-MCC) method and the immersed finite element (IFE) method, we propose a fully decoupled iterative method for solving this complex system. The IFE method allows Cartesian meshes for general interface problems, while the traditional finite element methods require body-fitting meshes which are often unstructured. Compared with traditional finite element methods, this feature significantly improves the efficiency of the proposed 3D fully decoupled iterative method, while maintaining the optimal accuracy of the chosen finite elements. Numerical simulations of traditional Kaufman ion thruster and annular ion thruster discharge chambers are provided and compared with the corresponding lab experiment results to illustrate the features of the proposed method.

MSC:

65C05 Monte Carlo methods
76X05 Ionized gas flow in electromagnetic fields; plasmic flow

Software:

IFE-PIC
Full Text: DOI

References:

[1] Tartz, M.; Hartmann, E.; Scholze, F.; Neumann, H., Modeling of broad beam ion sources, Rev. Sci. Instrum., 69, 2, 1147-1149 (1998)
[2] Lee, C.-C.; Hsu, J.-C.; Wei, D. T.; Lin, J.-H., Morphology of dual beam ion sputtered films investigated by atomic force microscopy, Thin Solid Films, 308, 74-78 (1997)
[3] Tartz, M.; Hartmann, E.; Deltschew, R.; Neumann, H., Approximation of the plasma inhomogeneity by broad-beam measurements and simulation, Rev. Sci. Instrum., 71, 2, 678-680 (2000)
[4] Monterde, M. P.; Haines, M. G.; Dangor, A. E.; Malik, A.; Fearn, D. G., Kaufman-type xenon ion thruster coupling plasma: Langmuir probe measurements, J. Phys. D Appl. Phys., 30, 842 (1999)
[5] D.M. Goebel, I. Katz, Fundamentals of Electric Propulsion: Ion and Hall Thrusters, John Wiley & Sons.
[6] Mahalingam, S.; Menart, J. A., Particle-based plasma simulations for an ion engine discharge chamber, J. Propuls. Power, 26, 4, 673-688 (2010)
[7] Hirakawa, M.; Arakawa, Y., Plasma particle simulation in cusped ion thrusters, (International Electrical Propulsion Conference Paper (1993))
[8] Mahalingam, S.; Menart, J. A., Primary electron modeling in the discharge chamber of an ion engine, (38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (2002), AIAA), 4262
[9] Deshpande, S.; Mahalingam, S.; Menart, J., Computational study of primary electrons in the cusp region of an ion engine’s discharge chamber, (40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (2004), AIAA), 4109
[10] Ogunjobi, T.; Menart, J., Computational study of ring-cusp magnet configurations that provide maximum electron confinement, (42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (2006), AIAA), 4489
[11] Bennett, W.; Ogunjobi, T.; Menart, J., Computational study of the effects of cathode placement, electron energy, and magnetic field strength on the confinement of electrons, (43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (2007), AIAA), 5248
[12] Mahalingam, S.; Menart, J., Ion engine discharge chamber plasma modeling using a 2-d pic simulation, (42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (2006), AIAA), 4488
[13] Mahalingam, S.; Choi, Y.; Loverich, J.; Stoltz, P.; Jonell, M.; Menart, J., Dynamic electric field calculations using a fully kinetic ion thruster discharge chamber model, (46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (2010), AIAA), 6944
[14] Mahalingam, S.; Choi, Y.; Loverich, J.; Stoltz, P.; Bias, B.; Menart, J., Fully coupled electric field/PIC-MCC simulation results of the plasma in the discharge chamber of an ion engine, (47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (2011), AIAA), 6071
[15] Taccogna, F.; Longo, S.; Capitelli, M.; Schneider, R., Self-similarity in Hall plasma discharges: Applications to particle models, Phys. Plasma, 12, 5, Article 053502 pp. (2005)
[16] Szabo, J. J., Fully Kinetic Numerical Modeling of a Plasma Thruster (2001), Massachusetts Institute of Technology, (Ph.D. thesis)
[17] Wirz, R. E., Discharge Plasma Processes of Ring-Cusp Ion Thrusters (2005), California Institute of Technology, (Ph.D. thesis)
[18] Wirz, R. E.; Katz, I., Plasma Processes of DC Ion Thruster Discharge Chambers (2005), AIAA
[19] Wirz, R. E.; Katz, I., 2-D Discharge Chamber Model for Ion Thrusters (2004), AIAA
[20] Stueber, T., Ion thruster discharge chamber simulation in three dimension, (Aiaa/Asme/Sae/Asee Joint Propulsion Conference & Exhibit (2013))
[21] Rovey, J. L.; Gallimore, A. D., Performance and flatness of a multiple-cathode, rectangular ion thruster discharge chamber, J. Propuls. Power, 23, 1, 44-50 (2007)
[22] Patterson, M.; Herman, D.; Shastry, R.; Noord, J. V.; Foster, J., Annular-geometry ion engine: Concept, development status, and preliminary performance, (48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (2012), AIAA), 3798
[23] Jin, J. M., (The Finite Element Method in Electromagnetics. The Finite Element Method in Electromagnetics, Wiley - IEEE (2015), Wiley)
[24] Lu, C.; Yang, Z.; Bai, J.; Cao, Y.; He, X.-M., Three-dimensional immersed finite element method for anisotropic magnetostatic/electrostatic interface problems with non-homogeneous flux jump, Internat. J. Numer. Methods Engrg., 121, 10, 2107-2127 (2020) · Zbl 07843285
[25] Guo, R., Design, Analysis, and Application of Immersed Finite Element Methods (2019), Virginia Polytechnic Institute and State University, (Ph.D. Dissertation)
[26] He, X.-M., Bilinear Immersed Finite Elements for Interface Problems (2009), Virginia Polytechnic Institute and State University, (Ph.D. Dissertation)
[27] Zhang, X., Nonconforming Immersed Finite Element Methods for Interface Problems (2013), Virginia Polytechnic Institute and State University, (Ph.D. Dissertation)
[28] Li, Z., The immersed interface method using a finite element formulation, Appl. Numer. Math., 27, 3, 253-267 (1997) · Zbl 0936.65091
[29] Li, Z.; Lin, T.; Wu, X., New cartesian grid methods for interface problems using the finite element formulation, Numer. Math., 96, 1, 61-98 (2003) · Zbl 1055.65130
[30] Adjerid, S.; Ben-Romdhane, M.; Lin, T., Higher degree immersed finite element methods for second-order elliptic interface problems, Int. J. Numer. Anal. Model., 11, 3, 541-566 (2014) · Zbl 1499.65639
[31] Adjerid, S.; Guo, R.; Lin, T., High degree immersed finite element spaces by a least squares method, Int. J. Numer. Anal. Model., 14, 4-5, 604-626 (2017) · Zbl 1429.65291
[32] Adjerid, S.; Lin, T., \(p-Th\) degree immersed finite element for boundary value problems with discontinuous coefficients, Appl. Numer. Math., 59, 6, 1303-1321 (2009) · Zbl 1177.65118
[33] Guo, R.; Lin, T., A group of immersed finite-element spaces for elliptic interface problems, IMA J. Numer. Anal., 39, 1, 482-511 (2019) · Zbl 1483.65184
[34] Guo, R.; Lin, T., A higher degree immersed finite element method based on a Cauchy extension for elliptic interface problems, SIAM J. Numer. Anal., 57, 4, 1545-1573 (2019) · Zbl 1420.65122
[35] Guo, R.; Lin, T.; Zhang, X., Nonconforming immersed finite element spaces for elliptic interface problems, Comput. Math. Appl., 75, 6, 2002-2016 (2018) · Zbl 1409.82015
[36] He, X.-M.; Lin, T.; Lin, Y., Approximation capability of a bilinear immersed finite element space, Numer. Methods Partial Differential Equations, 24, 5, 1265-1300 (2008) · Zbl 1154.65090
[37] Kafafy, R.; Lin, T.; Lin, Y.; Wang, J., Three-dimensional immersed finite element methods for electric field simulation in composite materials, Internat. J. Numer. Methods Engrg., 64, 7, 940-972 (2005) · Zbl 1122.78018
[38] Kwak, D.; Jin, S.; Kyeong, D., A stabilized p1-nonconforming immersed finite element method for the interface elasticity problems, ESAIM Math. Model. Numer. Anal., 51, 1, 187-207 (2017) · Zbl 1381.74199
[39] Wang, C.; Sun, P.; Li, Z., An iterative approach for constructing immersed finite element spaces and applications to interface problems, Int. J. Numer. Anal. Model., 16, 2, 167-191 (2019) · Zbl 1408.65090
[40] Bai, J.; Cao, Y.; He, X.-M.; Liu, H.; Yang, X., Modeling and an immersed finite element method for an interface wave equation, Comput. Math. Appl., 76, 7, 1625-1638 (2018) · Zbl 1434.65172
[41] Chu, Y.; Han, D.; Cao, Y.; He, X.-M.; Wang, J., An immersed-finite-element particle-in-cell simulation tool for plasma surface interaction, Int. J. Numer. Anal. Model., 14, 2, 175-200 (2017) · Zbl 1365.76112
[42] Feng, W.; He, X.-M.; Lin, Y.; Zhang, X., Immersed finite element method for interface problems with algebraic multigrid solver, Commun. Comput. Phys., 15, 4, 1045-1067 (2014) · Zbl 1388.65177
[43] Gong, Y.; Li, B.; Li, Z., Immersed-interface finite-element methods for elliptic interface problems with non-homogeneous jump conditions, SIAM J. Numer. Anal., 46, 472-495 (2008) · Zbl 1160.65061
[44] Guo, R.; Lin, T., An immersed finite element method for elliptic interface problems in three dimensions, J. Comput. Phys., 414, Article #109478 pp. (2020) · Zbl 1440.65207
[45] He, X.-M.; Lin, T.; Lin, Y.; Zhang, X., Immersed finite element methods for parabolic equations with moving interface, Numer. Methods Partial Differential Equations, 29, 2, 619-646 (2013) · Zbl 1266.65165
[46] He, X.-M.; Lin, T.; Lin, Y., Immersed finite element methods for elliptic interface problems with non-homogeneous jump conditions, Int. J. Numer. Anal. Model., 8, 2, 284-301 (2011) · Zbl 1211.65155
[47] Ji, H.; Chen, J.; Li, Z., A symmetric and consistent immersed finite element method for interface problems, J. Sci. Comput., 61, 3, 533-557 (2014) · Zbl 1308.65198
[48] Lin, T.; Sheen, D.; Zhang, X., A locking-free immersed finite element method for planar elasticity interface problems, J. Comput. Phys., 247, 228-247 (2013) · Zbl 1349.74328
[49] Vallaghè, S.; Papadopoulo, T., A trilinear immersed finite element method for solving the electroencephalography forward problem, SIAM J. Sci. Comput., 32, 4, 2379-2394 (2010) · Zbl 1214.92046
[50] Zhang, H.; Lin, T.; Lin, Y., Linear and quadratic immersed finite element methods for the multi-layer porous wall model for coronary drug-eluting stents, Int. J. Numer. Anal. Model., 15, 48-73 (2018) · Zbl 1406.76054
[51] Zhang, Q.; Ito, K.; Li, Z.; Zhang, Z., Immersed finite elements for optimal control problems of elliptic pdes with interfaces, J. Comput. Phys., 298, 305-319 (2015) · Zbl 1349.65638
[52] Ewing, R. E.; Li, Z.; Lin, T.; Lin, Y., The immersed finite volume element methods for the elliptic interface problems. Modelling ’98 (Prague), Math. Comput. Simulation, 50, 1-4, 63-76 (1999) · Zbl 1027.65155
[53] He, X.-M.; Lin, T.; Lin, Y., A bilinear immersed finite volume element method for the diffusion equation with discontinuous coefficients, dedicated to Richard E. Ewing on the occasion of his 60th birthday, Commun. Comput. Phys., 6, 1, 185-202 (2009) · Zbl 1364.65225
[54] Adjerid, S.; Chaabane, N.; Lin, T., An immersed discontinuous finite element method for Stokes interface problems, Comput. Methods Appl. Mech. Engrg., 293, 170-190 (2015) · Zbl 1423.76200
[55] He, X.-M.; Lin, T.; Lin, Y., Interior penalty bilinear IFE discontinuous Galerkin methods for elliptic equations with discontinuous coefficient, dedicated to David Russell’s 70th birthday, J. Syst. Sci. Complex., 23, 3, 467-483 (2010) · Zbl 1205.35010
[56] He, X.-M.; Lin, T.; Lin, Y., A selective immersed discontinuous Galerkin method for elliptic interface problems, Math. Methods Appl. Sci., 37, 7, 983-1002 (2014) · Zbl 1292.65126
[57] Lin, T.; Yang, Q.; Zhang, X., A priori error estimates for some discontinuous Galerkin immersed finite element methods, J. Sci. Comput., 65, 3, 875-894 (2015) · Zbl 1331.65154
[58] Guo, H.; Yang, X.; Zhang, Z., Superconvergence of partially penalized immersed finite element methods, IMA J. Numer. Anal., 38, 4, 2123-2144 (2018) · Zbl 1462.65187
[59] Guo, R.; Lin, T.; Lin, Y., Error estimates for a partially penalized immersed finite element method for elasticity interface problems, ESAIM Math. Model. Numer. Anal., 54, 1, 1-24 (2020) · Zbl 1442.74228
[60] Guo, R.; Lin, T.; Zhuang, Q., Improved error estimation for the partially penalized immersed finite element methods for elliptic interface problems, Int. J. Numer. Anal. Model., 16, 575-589 (2019) · Zbl 1427.65361
[61] He, C.; Zhang, X., Residual-based a posteriori error estimation for immersed finite element methods, J. Sci. Comput., 81, 3, 2051-2079 (2019) · Zbl 1429.65276
[62] He, X.-M.; Lin, T.; Lin, Y., The convergence of the bilinear and linear immersed finite element solutions to interface problems, Numer. Methods Partial Differential Equations, 28, 1, 312-330 (2012) · Zbl 1241.65090
[63] Lin, T.; Lin, Y.; Zhang, X., Partially penalized immersed finite element methods for elliptic interface problems, SIAM J. Numer. Anal., 53, 2, 1121-1144 (2015) · Zbl 1316.65104
[64] Cao, H.; Cao, Y.; Chu, Y.; He, X.-M.; Lin, T., A Huygens immersed-finite-element particle-in-cell method for modeling plasma-surface interactions with moving interface, Commun. Nonlinear Sci. Numer. Simul., 59, 132-148 (2018) · Zbl 1524.35666
[65] Cao, Y.; Chu, Y.; He, X.-M.; Lin, T., An iterative immersed finite element method for an electric potential interface problem based on given surface electric quantity, J. Comput. Phys., 281, 82-95 (2015) · Zbl 1351.78045
[66] Chu, Y.; Cao, Y.; He, X.-M.; Luo, M., Asymptotic boundary conditions with immersed finite elements for interface magnetostatic/electrostatic field problems with open boundary, Comput. Phys. Comm., 182, 11, 2331-2338 (2011) · Zbl 1308.78006
[67] D. Han, J. Wang, X.-M. He, PIFE-PIC: A 3-D parallel immersed finite element particle-in-cell framework for plasma simulations, #AIAA-2018-2196, in: Proceeding of 2018 AIAA Aerospace Sciences Meeting, Kissimmee, Florida, January 8-12, 2018.
[68] Han, D.; Wang, P.; He, X.-M.; Lin, T.; Wang, J., A 3D immersed finite element method with non-homogeneous interface flux jump for applications in particle-in-cell simulations of plasma-lunar surface interactions, J. Comput. Phys., 321, 965-980 (2016) · Zbl 1349.76212
[69] Kafafy, R., Immersed Finite Element Particle-In-Cell Simulations of Ion Propulsion (2005), Virginia Polytechnic Institute and State University, (Ph.D. dissertation)
[70] D. Depew, D. Han, J. Wang, X.-M. He, T. Lin, Immersed-Finite-Element Particle-In-Cell simulations of lunar surface charging, #199, in: Proceedings of the 13th Spacecraft Charging Technology Conference, Pasadena, California, June 23-27, 2014.
[71] Han, D.; Wang, J.; He, X.-M., A non-homogeneous immersed-finite-element particle-in-cell method for modeling dielectric surface charging in plasmas, IEEE Trans. Plasma Sci., 44, 8, 1326-1332 (2016)
[72] Han, D.; Wang, J.; He, X.-M., Immersed-finite-element particle-in-cell simulations of plasma charging at lunar terminator, J. Spacecr. Rockets, 55, 6, 1490-1497 (2018)
[73] Jian, H.; Chu, Y.; Cao, H.; Cao, Y.; He, X.-M.; Xia, G., Three-dimensional IFE-PIC numerical simulation of background pressure’s effect on accelerator grid impingement current for ion optics, Vacuum, 116, 130-138 (2015)
[74] J. Wang, X.-M. He, Y. Cao, Modeling spacecraft charging and charged dust particle interactions on lunar surface, in: Proceedings of the 10th Spacecraft Charging Technology Conference, Biarritz, France, 2007.
[75] Wang, J.; He, X.-M.; Cao, Y., Modeling electrostatic levitation of dusts on lunar surface, IEEE Trans. Plasma Sci., 36, 5, 2459-2466 (2008)
[76] Lieberman, M. A.; Lichtenberg, A. J., Principles of Plasma Discharges and Materials Processing (2005), John Wiley & Sons
[77] Goebel, D. M., Ion source discharge performance and stability, Phys. Fluids, 25, 6, 1093 (1982)
[78] Herman, D.; Gallimore, A., Discharge chamber plasma structure of a 30 cm NSTAR-type ion engine, (40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (2004)), 3794
[79] Wang, J. J.; Cao, Y.; Kafafy, R.; Martinez, R.; Williams, J., Numerical and experimental investigations of crossover ion impingement for subscale ion optics, J. Propuls. Power, 24, 3, 562-570 (2008)
[80] Kafafy, R.; Wang, J. J., Whole ion optics gridlet simulations using a hybrid-grid immersed-finite-element particle-in-cell code, J. Propuls. Power, 23, 1, 59-68 (2007)
[81] Zhao, Y.; Zhang, T.; Huang, Y.; Sun, X.; Sun, Y.; Li, J.; Yang, F.; Chi, X., Experimental study of 40cm ion thruster over a wide range of input power, J. Propuls. Technol., 39, 4, 942 (2018), (in chinese)
[82] Hu, J.; Wang, L.; Zhang, T.; Jiang, H., Magnetic field characteristics analysis and optimization design of 30 cm xenon ion thruster, Chin. Space Sci. Technol., 37, 5, 60-67 (2017), (in chinese)
[83] Birdsall, C. K.; Langdon, A. B., Plasma Physics via Computer Simulation (2004), CRC press
[84] Vahedi, V.; Surendra, M., A Monte Carlo collision model for the particle-in-cell method: applications to argon and oxygen discharges, Comput. Phys. Comm., 87, 1-2, 179-198 (1995)
[85] Rapp, D.; Englander-Golden, P., Total cross sections for ionization and attachment in gases by electron impact. I. Positive ionization, J. Chem. Phys., 43, 5, 1464-1479 (1965)
[86] Specht, L. T.; Lawton, S. A.; DeTemple, T. A., Electron ionization and excitation coefficients for argon, krypton, and xenon in the low E/N region, J. Appl. Phys., 51, 1, 166-170 (1980)
[87] Li, H., Study on Electron Near Wall Thansport over the Whole Lifetime of Hall Thrusters (2011), Harbin Institute of Technology, (Ph.D. thesis)
[88] Fredricks, R. W.; Mastrup, F., Ambipolar diffusion of a plasma in a weak magnetic field, Phys. Fluids, 6, 1, 36-39 (1963) · Zbl 0108.22901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.