×

A generalized finite difference method for solving elliptic interface problems. (English) Zbl 1515.65272

Summary: In this article a generalized finite difference method (GFDM), which is a meshless method based on Taylor series expansions and weighted moving least squares, is proposed to solve the elliptic interface problem. This method turns the original elliptic interface problem to be two coupled elliptic non-interface subproblems. The solutions are found by solving coupled elliptic subproblems with sparse coefficient matrix, which significantly improves the efficiency for the interface problem, especially for the complex geometric interface. Furthermore, based on the key idea of GFDM which can approximate the derivatives of unknown variables by linear summation of nearby nodal values, we further develop the GFDM to deal with the elliptic problem with the jump interface condition which is related to the derivative of solution on the interface boundary. Four numerical examples are provided to illustrate the features of the proposed method, including the acceptable accuracy and the efficiency.

MSC:

65N06 Finite difference methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Benito, J. J.; Urena, F.; Gavete, L., Influence of several factors in the generalized finite difference method, Appl. Math. Model., 25, 1039-1053 (2011) · Zbl 0994.65111
[2] Cao, H. J.; Cao, Y.; Chu, Y. C.; He, X. M.; Lin, T., A Huygens immersed-finite-element particle-in-cell method for modeling plasma-surface interactions with moving interface, Commun. Nonlinear Sci. Numer. Simul., 59, 132-148 (2018) · Zbl 1524.35666
[3] Chen, Z.; Zou, J., Finite element methods and their convergence for elliptic and parabolic interface problems, Numer. Math., 79, 175-202 (1998) · Zbl 0909.65085
[4] Dadone, A.; Grossman, B., An immersed body methodology for inviscid flflows on cartesian grids (2002), AIAA-1059
[5] Dehghan, M.; Abbaszadeh, M., Interpolating stabilized moving least squares (MLS) approximation for 2D elliptic interface problems, Comput. Methods Appl. Mech. Eng., 328, 775-803 (2018) · Zbl 1439.82015
[6] Fan, C. M.; Li, P. W., Generalized finite difference method for solving two-dimensional Burgers’ equations, Proc. Eng., 79, 55-60 (2014)
[7] Fan, C. M.; Li, P. W.; Yeih, W. C., Generalized finite difference method for solving two-dimensional inverse Cauchy problems, Inverse Probl. Sci. Eng., 23, 5, 737-759 (2015) · Zbl 1329.65257
[8] Gavete, L.; Benito, J. J.; Ureña, F., Generalized finite differences for solving 3D elliptic and parabolic equations, Appl. Math. Model., 40, 955-965 (2016) · Zbl 1446.74214
[9] Gavete, L.; Ureña, F.; Benito, J. J.; García, A.; Ureñ, M.; Salete, E., Solving second order non-linear elliptic partial differential equations using generalized finite difference method, J. Comput. Appl. Math., 318, 378-387 (2017) · Zbl 1357.65232
[10] Gavete, L.; Urena, F.; Benito, J. J.; Salete, E., A note on the dynamic analysis using the generalized finite difference method, J. Comput. Appl. Math., 252, 132-147 (2013) · Zbl 1290.74043
[11] Gersborg-Hansen, A.; Bendsøe, M. P.; Sigmund, O., Topology optimization of heat conduction problems using the fifinite volume method, Struct. Multidiscip. Optim., 31, 251-259 (2006) · Zbl 1245.80011
[12] Gong, Y.; Li, B.; Li, Z., Immersed-interface finite element methods for elliptic interface problems with nonhomogeneous jump condition, SIAM J. Numer. Anal., 46, 472-495 (2008) · Zbl 1160.65061
[13] Gu, Y.; Lei, J.; Fan, C. M.; He, X. Q., The generalized finite difference method for an inverse time-dependent source problem associated with three-dimensional heat equation, Eng. Anal. Bound. Elem., 91, 73-81 (2018) · Zbl 1403.65039
[14] Gu, Y.; Wang, L.; Chen, W.; Zhang, C. Z.; He, X. Q., Application of the meshless generalized finite difference method to inverse heat source problems, Int. J. Heat. Mass. Transf., 108, 721-729 (2017)
[15] Han, D. R.; Wang, P.; He, X. M.; Lin, T.; Wang, J., A 3D immersed finite element method with non-homogeneous interface flux jump for applications in particle-in-cell simulations of plasma-lunar surface interactions, J. Comput. Phys., 321, 965-980 (2016) · Zbl 1349.76212
[16] He, X.-M.; Lin, T.; Lin, Y.-P., Approximation capability of a bilinear immersed finite element space, Numer. Methods Partial Differential Equations, 24, 5, 1265-1300 (2008) · Zbl 1154.65090
[17] He, X.-M.; Lin, T.; Lin, Y., A bilinear immersed finite volume element method for the diffusion equation with discontinuous coefficients, Commun. Comput. Phys., 6, 1, 185-202 (2009) · Zbl 1364.65225
[18] He, X.-M.; Lin, T.; Lin, Y., Immersed finite element methods for elliptic interface problems with non-homogeneous jump conditions, Int. J. Numer. Anal. Model., 8, 284-301 (2011) · Zbl 1211.65155
[19] Hu, W.; Trask, N.; Hu, X.; Pan, W., A spatially adaptive high-order meshless method for fluid-structure interactions, Comput. Method. Appl. Mech., 355, 67-93 (2019) · Zbl 1441.76061
[20] Hua, Q.; Gu, Y.; Qu, W.; Chen, W.; Zhang, C., A meshless generalized finite difference method for inverse Cauchy problems associated with three-dimensional inhomogeneous Helmholtz-type equations, Eng. Anal. Bound. Elem., 82, 162-171 (2017) · Zbl 1403.65118
[21] Li, P. W.; Chen, W.; Fu, Z. J.; Fan, C. M., Generalized finite difference method for solving the double-diffusive natural convection in fluid-saturated porous media, Eng. Anal. Bound. Elem., 95, 175-186 (2018) · Zbl 1403.76132
[22] Li, P. W.; Fan, C. M., The generalized finite difference method for two-dimensional shallow water equations, Eng. Anal. Bound. Elem., 80, 58-71 (2017) · Zbl 1403.76133
[23] Li, P. W.; Fu, Z. J.; Gu, Y.; Song, Lina, The generalized finite difference method for the inverse Cauchy problem in linear elasticity, Int. J. Solids. Struct., 174-175, 69-84 (2019)
[24] Li, Q.; Shen, S.; Han, Z. D.; Atluri, S. N., Application of meshless local Petrov-Galerkin (MLPG) to problems with singularities, and material discontinuities, in 3-D elasticity, Comput. Model. Eng. Sci., 4, 571-585 (2003) · Zbl 1108.74387
[25] Lin, T.; Wang, J., An immersed finite element electric field solver for ion optics modeling, (Proceedings of AIAA Joint Propulsion Conference (2002), AIAA: AIAA Indianapolis), 2002-4263
[26] Orkisz, J., (Idelshon; Oňate; Duorkin, Meshless Finite Difference Method I. Basic Approach. Meshless Finite Difference Method I. Basic Approach, Comput. Mech. IACM. CINME. (1998))
[27] Salete, E.; Benito, J. J.; Ureña, F.; Gavete, L.; Ureñ, M.; García, A., Stability of perfectly matched layer regions in generalized finite difference method for wave problems, J. Comput. Appl. Math., 312, 231-239 (2017) · Zbl 1351.65060
[28] Shin, B.-C.; Jung, J.-H., Spectral collocation and radial basis function methods for one-dimensional interface problems, Appl. Numer. Math., 61, 8, 911-928 (2011) · Zbl 1219.65066
[29] Siraj-ul-Islam; Ahmad, M., Meshless analysis of elliptic interface boundary value problems, Eng. Anal. Bound. Elem., 92, 38-49 (2018) · Zbl 1403.65176
[30] Suchde, P.; Kuhnert, J., A meshfree generalized finite difference method for surface PDEs, Comput. Math. Appl., 78, 2789-2805 (2019) · Zbl 1443.65287
[31] Taleei, A.; Dehghan, M., Direct meshless local Petrov-Galerkin method for elliptic interface problems with applications in electrostatic and elastostatic, Comput. Methods Appl. Mech. Eng., 278, 479-498 (2014) · Zbl 1423.82009
[32] Taleei, A.; Dehghan, M., An efficient meshfree point collocation moving least squares method to solve the interface problems with nonhomogeneous jump conditions, Numer. Methods Partial Differential Equations, 31, 4, 1031-1053 (2015) · Zbl 1326.65165
[33] Trask, N.; Bochev, P.; Perego, M., A conservative, consistent, and scalable meshfree mimetic method, J. Comput. Phys., 409, 109-187 (2020) · Zbl 1435.65221
[34] Trask, N.; Kuberry, P., Compatible meshfree discretization of surface PDEs, Comput. Part. Mech., 7, 271-277 (2019)
[35] Trask, N.; Perego, M.; Bochev, P., A high-order staggered meshless method for elliptic problems, SIAM J. Sci. Comput., 39, 2, A479-A502 (2017) · Zbl 1365.65264
[36] Ureña, F.; Salete, E.; Benito, J. J.; Gavete, L., Solving third-and fourth-order partial differential equations using GFDM: application to solve problems of plates, Int. J. Comput. Math., 89, 3, 366-376 (2012) · Zbl 1242.65217
[37] Wang, W. C., A jump condition capturing finite difference scheme for elliptic interface problems, SIAM J. Sci. Comput., 25, 1479-1496 (2004) · Zbl 1061.65110
[38] Wang, H., An improved wpe method for solving discontinuous fokker-planck equations, Int. J. Numer. Anal. Model., 5, 1, 1-23 (2008) · Zbl 1132.82011
[39] Zhang, Z.; Noguchi, H.; Chen, J. S., Moving least-squares approximation with discontinuous derivative basis functions for shell structures with slope discontinuities, Int. J. Numer. Methods Eng., 76, 1202-1230 (2008) · Zbl 1195.74304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.