×

Modeling and an immersed finite element method for an interface wave equation. (English) Zbl 1434.65172

Summary: The electromagnetic field, which is governed by Maxwell’s equation, plays a key role in plasma simulation. In this article, we first derive the interface conditions when we rewrite the interface Maxwell’s equation, whose problem domain involves complex media such as objects of different materials, into a parabolic-hyperbolic type of interface model, which is a modified wave equation by adding a first order time derivative term due to the lossy medium. Based on the interface conditions and the existing bilinear immersed finite element space for the interface Poisson equation, we propose an immersed finite element method for the spatial discretization of this parabolic-hyperbolic interface equation on a Cartesian mesh independent of the interface. Then we use a second order finite difference method for the temporal discretization in order to develop the full discretization scheme. Compared with the unstructured body-fitting mesh which is needed by the traditional finite element method for interface problems, the Cartesian mesh independent of the interface will significantly benefit the plasma simulation in the electromagnetic field, especially the particle models (such as the particle-in-cell method). This method provides a new efficient way to study varying electromagnetic field with objects of different materials on a Cartesian mesh independent of the interface, hence builds a solid foundation for the further study on the motion of plasma in this electromagnetic field. Numerical examples are provided to demonstrate the features of the proposed method.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
78A25 Electromagnetic theory (general)
78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
78M20 Finite difference methods applied to problems in optics and electromagnetic theory
82D10 Statistical mechanics of plasmas

Software:

IFE-PIC
Full Text: DOI

References:

[1] Cao, H.; Chu, Y.; Wang, E.; Cao, Y.; Xia, G.; Zhang, Z., Numerical simulation study on barrel erosion of ion thruster accelerator grid, J. Propul. Power, 31, 6, 1785-1792 (2015)
[2] Fife, J. M., Hybrid-PIC Modeling and Electrostatic Probe Survey of Hall Thrusters (1998), Massachusetts Institute of Technology, (thesis)
[3] Peng, X.; Keefer, D.; Ruyten, W. M., Plasma particle simulation of electrostatic ion thrusters, J. Propul. Power, 8, 2, 361-366 (2015)
[4] Han, D.; Wang, J.; He, X.-M., A non-homogeneous immersed-finite-element particle-in-cell method for modeling dielectric surface charging in plasmas, IEEE Trans. Plasma Sci., 44, 8, 1326-1332 (2016)
[5] Han, D.; Wang, P.; He, X.-M.; Lin, T.; Wang, J., A 3D immersed finite element method with non-homogeneous interface flux jump for applications in particle-in-cell simulations of plasma-lunar surface interactions, J. Comput. Phys., 321, 965-980 (2016) · Zbl 1349.76212
[6] Wang, J.; He, X.-M.; Cao, Y., Modeling electrostatic levitation of dusts on lunar surface, IEEE Trans. Plasma Sci., 36, 5, 2459-2466 (2008)
[7] Birdsall, C. K., Particle-in-cell charged-particle simulations, plus monte carlo collisions with neutral atoms, PIC-MCC, IEEE Trans. Plasma Sci., 19, 2, 65-85 (1991)
[8] Jian, H.; Chu, Y.; Cao, H.; Cao, Y.; He, X.-M.; Xia, G., Three-dimensional IFE-PIC numerical simulation of background pressure’s effect on accelerator grid impingement current for ion optics, Vacuum, 116, 130-138 (2015)
[9] Vangilder, D. B.; Font, G. I.; Boyd, I. D., Hybrid monte carlo-particle-in-cell simulation of an ion thruster plume, J. Propul. Power, 15, 4, 530-538 (2015)
[10] Ginzburg, V. L.; Sadowski, W. L.; Gallik, D. M.; Brown, S. C., Propagation of Electromagnetic Waves in Plasma, 405-413 (1962), Elsevier Science Inc.
[11] Hasegawa, A., Particle dynamics in low frequency electromagnetic waves in inhomogeneous plasma, Phys. Fluids, 22, 10, 1988-1993 (2008) · Zbl 0408.76085
[12] Yang, P.; Yang, S.; Li, M., An initial-boundary value problem for the Maxwell equations, J. Differential Equations, 249, 12, 3003-3023 (2010) · Zbl 1205.35303
[13] Zhu, L.; Huang, T.; Li, L., A hybrid-mesh hybridizable discontinuous Galerkin method for solving the time-harmonic Maxwell’s equations, Appl. Math. Lett., 68, 109-116 (2017) · Zbl 1362.78013
[14] Yao, C.; Lin, Y.; Wang, C.; Kou, Y., A third order linearized BDF scheme for Maxwell’s equations with nonlinear conductivity using finite element method, Int. J. Numer. Anal. Model., 14, 4-5, 511-531 (2017) · Zbl 1383.78044
[15] Yee, K., Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas and Propagation, 14, 3, 302-307 (1966) · Zbl 1155.78304
[16] Engquist, B.; Majda, A., Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., 31, 139, 629-651 (1977) · Zbl 0367.65051
[17] Gedney, S. D., An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices, IEEE Trans. Antennas and Propagation, 44, 2, 1630-1639 (1996)
[18] Mur, G., Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations, IEEE Trans. Electromagn. Compat., EMC-23, 4, 377-382 (2007)
[19] Deinega, A.; Valuev, I., Subpixel smoothing for conductive and dispersive media in the finite-difference time-domain method, Opt. Lett., 32, 23, 3429-3431 (2007)
[20] Nguyen, D. D.; Zhao, S., High order FDTD methods for transverse magnetic modes with dispersive interfaces, Appl. Math. Comput., 226, 1, 699-707 (2014) · Zbl 1354.78015
[21] Nguyen, D. D.; Zhao, S., A second order dispersive FDTD algorithm for transverse electric Maxwell’s equations with complex interfaces, Comput. Math. Appl., 71, 4, 1010-1035 (2016) · Zbl 1443.65135
[22] Park, J. H.; Strikwerda, J. C., The domain decomposition method for Maxwell’s equations in time domain simulations with dispersive metallic media, SIAM J. Sci. Comput., 32, 2, 684-702 (2010) · Zbl 1210.78028
[23] Cangellaris, A.; Lin, C.; Mei, K., Point-matched time domain finite element methods for electromagnetic radiation and scattering, IEEE Trans. Antennas and Propagation, 35, 10, 1160-1173 (1987) · Zbl 0946.78515
[24] Li, J.; Chen, Y., Analysis of a time-domain finite element method for 3-D Maxwell’s equations in dispersive media, Comput. Methods Appl. Mech. Engrg., 195, 33-36, 4220-4229 (2006) · Zbl 1131.78008
[25] Cassier, M.; Joly, P.; Kachanovska, M., Mathematical models for dispersive electromagnetic waves: an overview, Comput. Math. Appl., 74, 11, 2792-2830 (2017) · Zbl 1397.78004
[26] Li, J.; Shi, C.; Shu, C., Optimal non-dissipative discontinuous Galerkin methods for Maxwells equations in Drude metamaterials, Comput. Math. Appl., 73, 8, 1760-1780 (2017) · Zbl 1370.74143
[27] Shi, C.; Li, J.; Shu, C., Discontinuous Galerkin methods for Maxwells equations in Drude metamaterials on unstructured meshes, J. Comput. Appl. Math., 342, 147-163 (2018) · Zbl 1462.65156
[28] Li, J.; Huang, Y.; Lin, Y., Developing finite element methods for Maxwell’s equations in a Cole-Cole dispersive medium, SIAM J. Sci. Comput., 33, 6, 3153-3174 (2011) · Zbl 1238.65097
[29] Chen, D.; Huang, T.; Li, L., Comparison of algebraic multigrid preconditioners for solving Helmholtz equations, J. Appl. Math., 2012, Article 367909 pp. (2012), 12 pages · Zbl 1244.65044
[30] Huang, Z.; Huang, T., A constraint preconditioner for solving symmetric positive definite systems and application to the Helmholtz equations and Poisson equations, Math. Model. Anal., 15, 3, 299-311 (2010) · Zbl 1410.65102
[31] Le, J.; Jin, H.; Lv, X.; Cheng, Q., A preconditioned method for the solution of the Robbins problem for the Helmholtz equation, ANZIAM J., 52, 87-100 (2010) · Zbl 1234.65037
[32] Wu, S.; Huang, T.; Li, L., Block triangular preconditioner for static Maxwell equations, J. Comput. Appl. Math., 30, 3, 589-612 (2011) · Zbl 1246.65059
[33] Wu, S.; Li, C.; Huang, T., Modified block preconditioners for the discretized time-harmonic Maxwell equations in mixed form, J. Comput. Appl. Math., 180, 2, 192-196 (2013) · Zbl 1198.65219
[34] Adjerid, S.; Guo, R.; Lin, T., High degree immersed finite element spaces by a least squares method, Int. J. Numer. Anal. Model., 14, 604-626 (2017) · Zbl 1429.65291
[35] Cao, Y.; Chu, Y.; He, X.-M.; Lin, T., An iterative immersed finite element method for an electric potential interface problem based on given surface electric quantity, J. Comput. Phys., 281, 82-95 (2015) · Zbl 1351.78045
[36] Chou, S.-H.; Attanayake, C., Flux recovery and superconvergence of quadratic immersed interface finite elements, Int. J. Numer. Anal. Model., 14, 1, 88-102 (2017) · Zbl 1365.65238
[37] Feng, W.; He, X.-M.; Lin, Y.; Zhang, X., Immersed finite element method for interface problems with algebraic multigrid solver, Commun. Comput. Phys., 15, 4, 1045-1067 (2014) · Zbl 1388.65177
[38] Gong, Y.; Li, B.; Li, Z., Immersed-interface finite-element methods for elliptic interface problems with non-homogeneous jump conditions, SIAM J. Numer. Anal., 46, 472-495 (2008) · Zbl 1160.65061
[39] He, X.-M.; Lin, T.; Lin, Y., A bilinear immersed finite volume element method for the diffusion equation with discontinuous coefficients, dedicated to richard e. ewing on the occasion of his 60th birthday, Commun. Comput. Phys., 6, 1, 185-202 (2009) · Zbl 1364.65225
[40] He, X.-M.; Lin, T.; Lin, Y., Interior penalty bilinear IFE discontinuous Galerkin methods for elliptic equations with discontinuous coefficient, dedicated to David Russell’s 70th birthday, J. Syst. Sci. Complex., 23, 3, 467-483 (2010) · Zbl 1205.35010
[41] He, X.-M.; Lin, T.; Lin, Y., A selective immersed discontinuous Galerkin method for elliptic interface problems, Math. Methods Appl. Sci., 37, 7, 983-1002 (2014) · Zbl 1292.65126
[42] Li, Z., The immersed interface method using a finite element formulation, Appl. Numer. Math., 27, 3, 253-267 (1997) · Zbl 0936.65091
[43] Li, Z.; Lin, T.; Wu, X., New Cartesian grid methods for interface problems using the finite element formulation, Numer. Math., 96, 1, 61-98 (2003) · Zbl 1055.65130
[44] Lin, M.; Lin, T.; Zhang, H., Error analysis of an immersed finite element method for Euler-Bernoulli beam interface problems, Int. J. Numer. Anal. Model., 14, 822-841 (2017) · Zbl 1375.74088
[45] Lin, T.; Lin, Y.; Zhang, X., Partially penalized immersed finite element methods for elliptic interface problems, SIAM J. Numer. Anal., 53, 2, 1121-1144 (2015) · Zbl 1316.65104
[46] Lin, T.; Sheen, D.; Zhang, X., A locking-free immersed finite element method for planar elasticity interface problems, J. Comput. Phys., 247, 228-247 (2013) · Zbl 1349.74328
[47] Vallaghè, S.; Papadopoulo, T., A trilinear immersed finite element method for solving the electroencephalography forward problem, SIAM J. Sci. Comput., 32, 4, 2379-2394 (2010) · Zbl 1214.92046
[48] Zhang, X., Nonconforming Immersed Finite Element Methods for Interface Problems (2013), Virginia Polytechnic Institute and State University, (Ph.D. Dissertation)
[49] Bai, J. W.; Cao, Y.; Chu, Y. C.; Zhang, X., An improved immersed finte element particle-in-cell method for plasma simulation, Comput. Math. Appl. (2017)
[50] Chu, Y.; Cao, Y.; He, X.-M.; Luo, M., Asymptotic boundary conditions with immersed finite elements for interface magnetostatic/electrostatic field problems with open boundary, Comput. Phys. Comm., 182, 11, 2331-2338 (2011) · Zbl 1308.78006
[51] D. Han, J. Wang, X.-M. He, PIFE-PIC: A 3-D parallel immersed finite element particle-in-cell framework for plasma simulations, #AIAA-2018-2196, in: Proceeding of 2018 AIAA Aerospace Sciences Meeting, Kissimmee, Florida, January 8-12, 2018.; D. Han, J. Wang, X.-M. He, PIFE-PIC: A 3-D parallel immersed finite element particle-in-cell framework for plasma simulations, #AIAA-2018-2196, in: Proceeding of 2018 AIAA Aerospace Sciences Meeting, Kissimmee, Florida, January 8-12, 2018.
[52] Kafafy, R., Immersed Finite Element Particle-In-Cell Simulations of Ion Propulsion (2005), Virginia Polytechnic Institute and State University, (Ph.D. dissertation)
[53] Cao, H.; Cao, Y.; Chu, Y.; He, X.-M.; Lin, T., A Huygens immersed-finite-element particle-in-cell method for modeling plasma-surface interactions with moving interface, Commun. Nonlinear Sci. Numer. Simul., 59, 132-148 (2018) · Zbl 1524.35666
[54] Chu, Y.; Han, D.; Cao, Y.; He, X.-M.; Wang, J., An immersed-finite-element particle-in-cell simulation tool for plasma surface interaction, Int. J. Numer. Anal. Model., 14, 2, 175-200 (2017) · Zbl 1365.76112
[55] D. Depew, D. Han, J. Wang, X.-M. He, T. Lin, Immersed-Finite-Element Particle-In-Cell simulations of lunar surface charging, #199, in: Proceedings of the 13th Spacecraft Charging Technology Conference, Pasadena, California, June 23-27, 2014.; D. Depew, D. Han, J. Wang, X.-M. He, T. Lin, Immersed-Finite-Element Particle-In-Cell simulations of lunar surface charging, #199, in: Proceedings of the 13th Spacecraft Charging Technology Conference, Pasadena, California, June 23-27, 2014.
[56] J. Wang, X.-M. He, Y. Cao, Modeling spacecraft charging and charged dust particle interactions on lunar surface, in: Proceedings of the 10th Spacecraft Charging Technology Conference, Biarritz, France, 2007.; J. Wang, X.-M. He, Y. Cao, Modeling spacecraft charging and charged dust particle interactions on lunar surface, in: Proceedings of the 10th Spacecraft Charging Technology Conference, Biarritz, France, 2007.
[57] Monk, P., Finite Element Methods for Maxwell’s Equations (2003), Oxford University Press · Zbl 1024.78009
[58] Li, J.; Huang, Y., Time-domain Finite Element Methods for Maxwell’s Equations in Metamaterials (2013), Springer Berlin Heidelberg · Zbl 1304.78002
[59] Jin, J., The Finite Element Method in Electromagnetics (2015), John Wiley & Sons
[60] Lee, J. F., WETD-a finite element time-domain approach for solving Maxwell’s equations, IEEE Microw. Guid. Wave Lett., 4, 1, 11-13 (1994)
[61] He, X.-M., Bilinear Immersed Finite Elements for Interface Problems (2009), Virginia Polytechnic Institute and State University, (Ph.D. Dissertation)
[62] He, X.-M.; Lin, T.; Lin, Y., Approximation capability of a bilinear immersed finite element space, Numer. Methods Partial Differential Equations, 24, 5, 1265-1300 (2008) · Zbl 1154.65090
[63] Lin, T.; Lin, Y.; Rogers, R. C.; Ryan, L. M., A rectangular immersed finite element method for interface problems, (Minev, P.; Lin, Y., Advances in Computation: Theory and Practice, Vol. 7 (2001), Nova Science Publishers, Inc.), 107-114 · Zbl 1019.65092
[64] He, X.-M.; Lin, T.; Lin, Y., The convergence of the bilinear and linear immersed finite element solutions to interface problems, Numer. Methods Partial Differential Equations, 28, 1, 312-330 (2012) · Zbl 1241.65090
[65] He, X.-M.; Lin, T.; Lin, Y., Immersed finite element methods for elliptic interface problems with non-homogeneous jump conditions, Int. J. Numer. Anal. Model., 8, 2, 284-301 (2011) · Zbl 1211.65155
[66] He, X.-M.; Lin, T.; Lin, Y.; Zhang, X., Immersed finite element methods for parabolic equations with moving interface, Numer. Methods Partial Differential Equations, 29, 2, 619-646 (2013) · Zbl 1266.65165
[67] Lin, T.; Lin, Y.; Zhang, X., A method of lines based on immersed finite elements for parabolic moving interface problems, Adv. Appl. Math. Mech., 5, 4, 548-568 (2013)
[68] Douglas, J.; Dupont, T., Galerkin methods for parabolic equations, SIAM J. Numer. Anal., 7, 575-626 (1970) · Zbl 0224.35048
[69] He, X.-M.; Lü, T., A finite element splitting extrapolation for second order hyperbolic equations, SIAM J. Sci. Comput., 31, 6, 4244-4265 (2009) · Zbl 1205.65269
[70] Thomée, V., (Galerkin Finite Element Methods for Parabolic Problems. Galerkin Finite Element Methods for Parabolic Problems, Springer Series in Computational Mathematics, vol. 25 (2006), Springer-Verlag: Springer-Verlag Berlin) · Zbl 1105.65102
[71] Wheeler, M. F., A Priori \(L^2\) Error Estimates for Galerkin Approximations to Parabolic Partial Eifferential Equations (1971), Rice University, (Ph.D. Dissertation)
[72] Baccouch, M., An optimal a posteriori error estimates of the local discontinuous Galerkin method for the second-order wave equation in one space dimension, Int. J. Numer. Anal. Model., 14, 3, 355-380 (2017) · Zbl 1422.65225
[73] Huang, J.; Wang, Z., Extrapolation algorithms for solving mixed boundary integral equations of the Helmholtz equation by mechanical quadrature methods, SIAM J. Sci. Comput., 31, 6, 4115-4129 (2009/10) · Zbl 1206.35077
[74] Meng, H.; Wang, Y., A variational formulation for traveling waves and its applications, Electron. J. Differential Equations, 2014, 144, 1-13 (2014) · Zbl 1297.35075
[75] Geng, H.; Yin, T.; Xu, L., A priori error estimates of the DtN-FEM for the transmission problem in acoustics, J. Comput. Appl. Math., 313, 1-17 (2017) · Zbl 1353.35082
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.