×

Nonlinear analysis of the internal resonance response of an L-shaped beam structure considering quadratic and cubic nonlinearity. (English) Zbl 1539.74190

Summary: The nonlinear behaviors of the L-shaped beam structure based on 1:2 internal resonance are investigated. The governing equations considering quadratic and cubic nonlinearity of the L-shaped beam structure are verified by the transient dynamic analysis of the finite element model. The approximate analytical solution for this system is derived by the method of multiple scales, and verified by the numerical solution. The Jacobian matrix of the modulation equation is employed to determine the equilibrium stability of the vibration response. The effects of the excitation frequency, amplitude and cubic nonlinear terms on the nonlinear responses of the primary resonance of the first and second modes are discussed. The bifurcation diagram, spectrum, phase plane and Poincaré section are applied to investigate the nonlinear vibration response. The results reveal that many nonlinear phenomena are observed, such as double-jump, hysteresis, Hopf bifurcation, modal saturation, multiple solutions, multi-softening and so on. The influence of cubic nonlinear term on internal resonance response should be considered. The broadband characteristics of internal resonance system are broadened by the nonlinear softening and hardening in the frequency response curve. In the primary resonance of the second mode, the hardening region in the frequency response curve becomes the softening region with the increase of excitation amplitude. The double-jump phenomenon is found in this newly formed softening region, and up to five solutions are observed in this region, including three sink points and two saddle-nodes. The broadband characteristics of the system is of great benefit to the application of broadband piezoelectric vibration energy harvesting.

MSC:

74K10 Rods (beams, columns, shafts, arches, rings, etc.)
70K30 Nonlinear resonances for nonlinear problems in mechanics
Full Text: DOI

References:

[1] Yang, T.; Cao, Q., Nonlinear transition dynamics in a time-delayed vibration isolator under combined harmonic and stochastic excitations, J. Stat. Mech. (2017) · Zbl 1456.70037 · doi:10.1088/1742-5468/aa50dc
[2] Wang, J.; Geng, L.; Yang, K.; Zhao, L.; Wang, F.; Yurchenko, D., Dynamics of the double-beam piezo-magneto-elastic nonlinear wind energy harvester exhibiting galloping-based vibration, Nonlinear Dyn., 100, 1963-1983 (2020) · doi:10.1007/s11071-020-05633-3
[3] Jin, Y.; Xiao, S.; Zhang, Y., Enhancement of tristable energy harvesting using stochastic resonance, J. Stat. Mech. (2018) · Zbl 1456.74042 · doi:10.1088/1742-5468/aae5a3
[4] Sun, J.; Kari, L.; Lopez-Arteaga, I., A dynamic rotating blademodelat an arbitrary stagger angle based on classical platetheory and the Hamilton’s principle, J. Sound Vib., 332, 1355-1371 (2013) · doi:10.1016/j.jsv.2012.10.030
[5] Safaei, M.; Sodano, H. A.; Anton, S. R., A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008-2018), Smart Mater. Struct., 28 (2019) · doi:10.1088/1361-665x/ab36e4
[6] Yan, Z.; Sun, W.; Hajj, M. R.; Zhang, W.; Tan, T., Ultra-broadband piezoelectric energy harvesting via bistable multi-hardening and multi-softening, Nonlinear Dyn., 100, 1057-1077 (2020) · doi:10.1007/s11071-020-05594-7
[7] Wu, Y.; Li, S.; Fan, K.; Ji, H.; Qiu, J., Investigation of an ultra-low frequency piezoelectric energy harvester with high frequency up-conversion factor caused by internal resonance mechanism, Mech. Syst. Signal Process., 162 (2022) · doi:10.1016/j.ymssp.2021.108038
[8] Edwards, B.; Aw, K. C.; Hu, A. P., Mechanical frequency up-conversion for sub-resonance, low-frequency vibration harvesting, J. Intell. Mater. Syst. Struct., 27, 2145-2159 (2016) · doi:10.1177/1045389x15624795
[9] Yang, T.; Cao, Q., Novel multi-stable energy harvester by exploring the benefits of geometric nonlinearity, J. Stat. Mech. (2019) · Zbl 1528.70029 · doi:10.1088/1742-5468/ab0c15
[10] Tan, T.; Wang, Z.; Zhang, L.; Liao, W.; Yan, Z., Piezoelectric autoparametric vibration energy harvesting with chaos control feature, Mech. Syst. Signal Process., 161 (2021) · doi:10.1016/j.ymssp.2021.107989
[11] Yang, T.; Zhou, S.; Fang, S.; Qin, W.; Inman, D. J., Nonlinear vibration energy harvesting and vibration suppression technologies: designs, analysis, and applications, Appl. Phys. Rev., 8 (2021) · doi:10.1063/5.0051432
[12] Nayfeh, A. H., Nonlinear Interactions: Analytical, Computational, and Experimental Methods (1998), New York: Wiley, New York
[13] Jiang, W-A; Ma, X-D; Han, X-J; Chen, L-Q; Bi, Q-S, Broadband energy harvesting based on one-to-one internal resonance, Chin. Phys. B, 29 (2020) · doi:10.1088/1674-1056/aba5fd
[14] Jo, H.; Yabuno, H., Amplitude reduction of parametric resonance by dynamic vibration absorber based on quadratic nonlinear coupling, J. Sound Vib., 329, 2205-2217 (2010) · doi:10.1016/j.jsv.2010.01.006
[15] Jiang, W.; Han, X.; Chen, L.; Bi, Q., Improving energy harvesting by internal resonance in a spring-pendulum system, Acta Mech. Sin., 36, 618-623 (2020) · doi:10.1007/s10409-020-00945-4
[16] Ji, J. C., Design of a nonlinear vibration absorber using three-to-one internal resonances, Mech. Syst. Signal Process., 42, 236-246 (2014) · doi:10.1016/j.ymssp.2013.06.019
[17] Su, X.; Kang, H.; Guo, T., Modelling and energy transfer in the coupled nonlinear response of a 1:1 internally resonant cable system with a tuned mass damper, Mech. Syst. Signal Process., 162 (2022) · doi:10.1016/j.ymssp.2021.108058
[18] Yan, Z.; Taha, H. E.; Tan, T., Nonlinear characteristics of an autoparametric vibration system, J. Sound Vib., 390, 1-22 (2017) · doi:10.1016/j.jsv.2016.12.003
[19] Zhang, J.; Li, X.; Li, R.; Dai, L.; Wang, W.; Yang, K., Internal resonance of a two-degree-of-freedom tuned bistable electromagnetic actuator, Chaos Solitons Fractals, 143 (2021) · doi:10.1016/j.chaos.2020.110612
[20] Aravindan, M.; Ali, S. F., Exploring 1:3 internal resonance for broadband piezoelectric energy harvesting, Mech. Syst. Signal Process., 153 (2021) · doi:10.1016/j.ymssp.2020.107493
[21] Liu, T.; Zhang, W.; Zheng, Y.; Zhang, Y. F., Andronov-Hopf bifurcations, Pomeau-Manneville intermittent chaos and nonlinear vibrations of large deployable space antenna subjected to thermal load and radial pre-stretched membranes with 1:3 internal resonance, Chaos Solitons Fractals, 144 (2021) · doi:10.1016/j.chaos.2021.110719
[22] Nayfeh, A. H.; Lacarbonara, W.; Chin, C. M., Nonlinear normal modes of buckled beams: three-to-one, and one-to-one internal resonances, Nonlinear Dyn., 18, 253-273 (1999) · Zbl 0960.74032 · doi:10.1023/a:1008389024738
[23] Golnaraghi, M. F., Vibration suppression of flexible structures using internal resonance, Mech. Res. Commun., 18, 135-143 (1991) · Zbl 0719.73504 · doi:10.1016/0093-6413(91)90042-u
[24] Cuvalci, O.; Ertas, A., Pendulum as vibration absorber for flexible structures: experiments and theory, J. Vib. Acoust., 118, 590-595 (1997) · doi:10.1115/1.2888335
[25] Haddow, A.; Barr, A.; Mook, D., Theoretical and experimental study of modal interaction in a two-degree-of-freedom structure, J. Sound Vib., 97, 451-473 (1984) · doi:10.1016/0022-460x(84)90272-4
[26] Balachandran, B.; Nayfeh, A. H., Nonlinear motion of beam-mass structure, Nonlinear Dyn., 1, 39-61 (1990) · doi:10.1007/bf01857584
[27] Nayfeh, A. H.; Balachandran, B.; Colbert, M. A.; Nayfeh, M. A., An experimental investigation of complicated responses of a two-degree-of-freedom structure, J. Appl. Mech., 56, 960-967 (1989) · doi:10.1115/1.3176197
[28] Nayfeh, A. H.; Balachandran, B., Experimental investigation of resonantly forced oscillations of a two-degree-of-freedom structure, Int. J. Non-Linear Mech., 25, 199-209 (1990) · doi:10.1016/0020-7462(90)90051-a
[29] Nayfeh, A. H.; Zavodney, L. D., Experimental observation of amplitude-and phase-modulated responses of two internally coupled oscillators to a harmonic excitation, J. Appl. Mech., 55, 706-710 (1988) · doi:10.1115/1.3125853
[30] Pun, D.; Lau, S. L.; Liu, Y. B., Internal resonance of an L-shaped beam with a limit stop: II. Forced vibration, J. Sound Vib., 193, 1037-1047 (1996) · doi:10.1006/jsvi.1996.0330
[31] Cao, D.; Zhang, W.; Yao, M., Analytical and experimental studies on nonlinear characteristics of an L-shape beam structure, Acta Mech. Sin., 26, 967-976 (2010) · Zbl 1270.74111 · doi:10.1007/s10409-010-0385-9
[32] Cao, D.; Leadenham, S.; Erturk, A., Internal resonance for nonlinear vibration energy harvesting, Eur. Phys. J. Spec. Top., 224, 2867-2880 (2015) · doi:10.1140/epjst/e2015-02594-4
[33] Chen, L.; Jiang, W.; Panyam, M.; Daqaq, M., A broadband internally-resonant vibratory energy harvester, J. Vib. Acoust., 138, 1-32 (2016) · doi:10.1115/1.4034253
[34] Harne, R.; Sun, A.; Wang, K., Leveraging nonlinear saturation-based phenomena in an L-shaped vibration energy harvesting system, J. Sound Vib., 363, 517-531 (2016) · doi:10.1016/j.jsv.2015.11.017
[35] Liu, D.; Al-Haik, M.; Zakaria, M.; Hajj, M. R., Piezoelectric energy harvesting using L-shaped structures, J. Intell. Mater. Syst. Struct., 29, 1206-1215 (2017) · doi:10.1177/1045389x17730926
[36] Li, H.; Sun, H.; Song, B.; Zhang, D.; Shang, X.; Liu, D., Nonlinear dynamic response of an L-shaped beam-mass piezoelectric energy harvester, J. Sound Vib., 499 (2021) · doi:10.1016/j.jsv.2021.116004
[37] Nie, X.; Tan, T.; Yan, Z.; Yan, Z.; Hajj, M. R., Broadband and high efficient L-shaped piezoelectric energy harvester based on internal resonance, Int. J. Mech. Sci., 159, 287-305 (2019) · doi:10.1016/j.ijmecsci.2019.06.009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.