×

Optimal workload allocation in closed queueing networks with state dependent queues. (English) Zbl 1321.90042

Summary: The problem of optimal workload allocation in closed queueing network models with multi-server exponential infinite capacity workstations and finite capacity state dependent queueing models is examined. The processing rates (i.e. service times) of jobs in the queueing system are the main focus. State dependent queues are appropriate for modeling the transportation and material transfer of the customers and products within the system. By combining these two types of queues, we can model the processing of jobs or customers at service stations and also the material handling transfer of job and customers between these stations. Because the environment is a closed queueing network model, it allows for the dynamic interaction of the jobs and customers in the optimal workload allocation values. This combination of queues and optimal search process provides a broad range of potential applications in manufacturing and service type design operations where the travel time between workstations is important. Conveyors, automated-guided vehicle systems (AGVS), and fork lift trucks are utilized to show the full range of material handling component systems.

MSC:

90B22 Queues and service in operations research
90B15 Stochastic network models in operations research
Full Text: DOI

References:

[1] Benjaafar, S., & Diwakar, G. (1999). Workload allocation in multi-product, multi-facility production systems with setup times. IIE Transactions, 31, 339-352.
[2] Calabrese, J. K. (1992). Optimal workload allocation in open networks of multiserver queues. Management Science, 38(12), 1792-1802. · Zbl 0765.90043 · doi:10.1287/mnsc.38.12.1792
[3] Cheah, J., & Smith, J. M. (1994). Generalized M/G/c/c state dependent queueing models and pedestrian traffic flows. Questa, 15, 365-386. · Zbl 0797.90028
[4] Dallery, Y., & Stecke, K. E. (1990). On the optimal allocation of servers and workloads in closed queueing networks. Operations Research, 38(4), 694-703. · Zbl 0718.90033 · doi:10.1287/opre.38.4.694
[5] Harel, A. (2011). Convexity results for the Erlang delay and loss formulae when the server utilization is held constant. Operations Research, 59(6), 1420-1426. · Zbl 1241.90033 · doi:10.1287/opre.1110.0957
[6] Harel, A., & Zipkin, P. H. (1987). Strong convexity results for queueing systems. Operations Research, 35(3), 405-418. · Zbl 0636.60097 · doi:10.1287/opre.35.3.405
[7] Heyman, D. P., & Sobel, M. J. (1982). Stochastic models in operations research: vol. I. New York: Dover. · Zbl 0503.90031
[8] Hillier, F., & So, K. (1995). On the optimal design of tandem queueing systems with finite buffers. Queueing Systems, 21, 245-266. · Zbl 0855.60093 · doi:10.1007/BF01149164
[9] IMSL Software Systems (1987). MATH/Library, Fortran subroutines for mathematical applications. · Zbl 0765.90043
[10] Kelton, D., Sadowski, R., & Swets, N. (2010). Simulation with arena, 5th ed. New York: McGraw-Hill.
[11] Kleinrock, L. (1964). Communication nets: stochastic message flow and delay. New York: McGraw-Hill (Reprinted by Dover Publications, 1972). · Zbl 0274.90012
[12] Kleinrock, L. (2002). Creating a mathematical theory of computer networks. Operations Research, 50(2), 125-131. · Zbl 1163.68313 · doi:10.1287/opre.50.1.125.17772
[13] Kobayashi, H., & Mark, B. L. (2002). Generalized loss models and queueing-loss networks. International Transactions in Operational Research, 9, 97-112. · Zbl 0994.90010 · doi:10.1111/1475-3995.00343
[14] Kobayashi, H., & Mark, B. L. (2009). System modeling and analysis: foundations of system performance evaluation. Upper Saddle River: Pearson.
[15] Lee, H. F., Srinivasan, M. M., & Yano, C. (1988). Some characteristics of optimal workload allocation for closed queueing networks. Dept. of Industrial and Operations Eng., University of Michigan, Ann Arbor, MI. · Zbl 0754.60099
[16] Reiser, M., & Lavenberg, S. (1980). Mean value analysis of closed multi-chain queueing networks. Journal of the ACM, 27(2), 313-322. · Zbl 0441.68036 · doi:10.1145/322186.322195
[17] Ross, S. (2003). Introduction to probability models (8th ed.). San Diego: Academic Press. · Zbl 1019.60003
[18] Schittkowski, K. (1985/86). NLPQL: a FORTRAN subroutine solving constrained nonlinear programming problems. Annals of Operations Research, 5, 485-500. · doi:10.1007/BF02739235
[19] Schweitzer, P., & Seidmann, A. (1991). Optimizing processing rates for flexible manufacturing systems. Management Science, 37(4), 454-466. · doi:10.1287/mnsc.37.4.454
[20] Shantikumar, J. G., & Yao, D. (1986). Optimal server allocation in a system of multiserver stations. Management Science, 33, 1173-1180. · Zbl 0636.90034 · doi:10.1287/mnsc.33.9.1173
[21] Smith, J. M. (2010). Robustness of state-dependent queues and material handling systems. Int. J. Prod. Res., 48(16), 4631-4663. · Zbl 1197.90080 · doi:10.1080/00207540903049373
[22] Smith, J. M., & Kerbache, L. (2012). State-dependent models of material handling systems in closed queueing networks. Int. J. Prod. Res., 50(2), 461-484. · doi:10.1080/00207543.2010.535041
[23] Smith, J. M., & Towsley, D. (1982). The use of queueing networks in the evaluation of egress from buildings. Environment and Planning B, 8, 125-139. · doi:10.1068/b080125
[24] Spinellis, D., Papadopoulos, C., & Smith, J. M. (2000). Large production line optimization using simulated annealing. International Journal of Production Research, 38(3), 509-541. · Zbl 0944.90518 · doi:10.1080/002075400189284
[25] Stecke, K. E. (1983). Formulation and solution of nonlinear integer production planning problems for flexible manufacturing systems. Management Science, 29(3), 273-288. · Zbl 0517.90035 · doi:10.1287/mnsc.29.3.273
[26] Stecke, K. E. (1986). A hierarchical approach to solving machine grouping and loading problems of flexible manufacturing systems. European Journal of Operational Research, 24, 369-378. · Zbl 0597.90041 · doi:10.1016/0377-2217(86)90030-5
[27] Stecke, K. E., & Solberg, J. J. (1985). The optimality of unbalancing both workloads and machine group sizes in CLosed queueing networks. Operations Research, 33(4), 882-910. · Zbl 0584.90022 · doi:10.1287/opre.33.4.882
[28] Sung, S. T.; Gervasi, O. (ed.); etal., On the optimal workloads allocation of an FMS with finite in-process buffers, No. 3483, 624-631 (2005)
[29] Sung, C. S., & Kwon, S. T. (1994). Performance modeling of an FMS with finite input and output buffers. International Journal of Production Economics, 37, 161-175. · doi:10.1016/0925-5273(94)90168-6
[30] Tregenza, P. (1976). The design of interior circulation. New York: Van Nostrand Reinhold.
[31] Yao, D. (1985). Some properties of the throughput function of closed networks of queues. Operations Research Letters, 3(6), 313-317. · Zbl 0569.90029 · doi:10.1016/0167-6377(85)90007-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.