×

Sensitivity of anomalous quartic gauge couplings via \(Z\gamma\gamma\) production at future hadron-hadron colliders. (English) Zbl 1498.81136

Summary: Triple gauge boson production provides a promising opportunity to probe the anomalous quartic gauge couplings in understanding the details of electroweak symmetry breaking at future hadron-hadron collider facilities with increasing center of mass energy and luminosity. In this paper, we investigate the sensitivities of dimension-8 anomalous couplings related to the \(ZZ\gamma\gamma\) and \(Z\gamma\gamma\gamma\) quartic vertices, defined in the effective field theory framework, via \(pp\to Z\gamma\gamma\) signal process with Z-boson decaying to charged leptons at the high luminosity phase of LHC (HL-LHC) and future facilities, namely the High Energy LHC (HE-LHC) and Future Circular hadron-hadron collider (FCC-hh). We analyzed the signal and relevant backgrounds via a cut based method with Monte Carlo event sampling where the detector responses of three hadron collider facilities, the center-of-mass energies of 14, 27 and 100 TeV with integrated luminosities of 3, 15 and 30 \(\mathrm{ab}^{-1}\) are considered for the HL-LHC, HE-LHC and FCC-hh, respectively. The reconstructed 4-body invariant mass of \(l^+l^-\gamma\gamma\) system is used to constrain the anomalous quartic gauge coupling parameters under the hypothesis of absence of anomalies in triple gauge couplings. Our results indicate that the sensitivity on anomalous quartic couplings \(f_{T8}/\Lambda^4\) and \(f_{T9}/\Lambda^4\) (\(f_{T 0}/\Lambda^4\), \(f_{T1}/\Lambda^4\) and \(f_{T2}/\Lambda^4)\) at 95% C.L. for FCC-hh with \(L_{int} = 30\) \(\mathrm{ab}^{-1}\) without systematic errors is two (one) order better than the current experimental limits. Considering a realistic systematic uncertainty such as 10% from possible experimental sources, the sensitivity of all anomalous quartic couplings gets worsen by about 1.2%, 1.7% and 1.5% compared to those without systematic uncertainty for HL-LHC, HE-LHC and FCC-hh, respectively.

MSC:

81V35 Nuclear physics
81U35 Inelastic and multichannel quantum scattering
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems
81V10 Electromagnetic interaction; quantum electrodynamics
81V15 Weak interaction in quantum theory
81T50 Anomalies in quantum field theory
60G35 Signal detection and filtering (aspects of stochastic processes)
65C05 Monte Carlo methods
81-05 Experimental work for problems pertaining to quantum theory

Software:

FeynRules

References:

[1] Aad, G., Phys. Lett. B, 716, 1 (2012)
[2] Chatrchyan, S., Phys. Lett. B, 716, 30 (2012)
[3] Belanger, G.; Boudjema, F., Phys. Lett. B, 288, 201-209 (1992)
[4] Eboli, O. J.P.; Gonzalez-Garcia, M. C.; Lietti, S. M., Phys. Rev. D, 69, Article 095005 pp. (2004)
[5] Achard, P., Phys. Lett. B, 540, 43-51 (2002)
[6] Abbiendi, G., Phys. Rev. D, 70, Article 032005 pp. (2004)
[7] Aad, G., Phys. Rev. D, 93, 11, Article 112002 pp. (2016)
[8] Sirunyan, A. M., J. High Energy Phys., 10, Article 072 pp. (2017)
[9] Tumasyan, A.
[10] Abbott, B., Phys. Rev. D, 62, Article 052005 pp. (2000)
[11] Abazov, V. M., Phys. Rev. D, 88, Article 012005 pp. (2013)
[12] Aad, G., Phys. Rev. Lett., 113, 14, Article 141803 pp. (2014)
[13] Aad, G., Phys. Rev. Lett., 115, 3, Article 031802 pp. (2015)
[14] Aaboud, M., Phys. Rev. D, 96, 1, Article 012007 pp. (2017)
[15] Aaboud, M., Eur. Phys. J. C, 77, 9, 646 (2017)
[16] Aaboud, M., Phys. Rev. D, 95, 3, Article 032001 pp. (2017)
[17] Chatrchyan, S., Phys. Rev. D, 90, 3, Article 032008 pp. (2014)
[18] Sirunyan, A. M., Phys. Lett. B, 774, 682-705 (2017)
[19] Khachatryan, V., Phys. Lett. B, 770, 380-402 (2017)
[20] Khachatryan, V., J. High Energy Phys., 06, Article 106 pp. (2017)
[21] Sirunyan, A. M., Phys. Rev. Lett., 120, 8, Article 081801 pp. (2018)
[22] Sirunyan, A. M., Phys. Lett. B, 795, 281-307 (2019)
[23] Sirunyan, A. M., Phys. Lett. B, 798, Article 134985 pp. (2019)
[24] Sirunyan, A. M., Phys. Lett. B, 812, Article 135992 pp. (2021)
[25] Sirunyan, A. M., J. High Energy Phys., 06, Article 076 pp. (2020)
[26] Sirunyan, A. M., Phys. Lett. B, 809, Article 135710 pp. (2020)
[27] Sirunyan, A. M., Phys. Lett. B, 811, Article 135988 pp. (2020)
[28] Tumasyan, A.
[29] Degrande, C.; Holzbauer, J. L.; Hsu, S. C.; Kotwal, A. V.; Li, S.; Marx, M.; Mattelaer, O.; Metcalfe, J.; Pleier, M. A.; Pollard, C.
[30] Gutierrez-Rodriguez, A.; Honorato, C. G.; Montano, J.; Pérez, M. A., Phys. Rev. D, 89, 3, Article 034003 pp. (2014)
[31] ATLAS, ATL-PHYS-PUB-2013-006.
[32] Kurova, A. S.; Soldatov, E. Y., Phys. At. Nucl., 80, 4, 725-729 (2017)
[33] Kurova, A. S.; Soldatov, E. Y., J. Phys. Conf. Ser., 798, 1, Article 012097 pp. (2017)
[34] Belyaev, A. S.; Eboli, O. J.P.; Gonzalez-Garcia, M. C.; Mizukoshi, J. K.; Novaes, S. F.; Zacharov, I., Phys. Rev. D, 59, Article 015022 pp. (1999)
[35] Eboli, O. J.P.; Gonzalez-Garcia, M. C.; Lietti, S. M.; Novaes, S. F., Phys. Rev. D, 63, Article 075008 pp. (2001)
[36] Perez, G.; Sekulla, M.; Zeppenfeld, D., Eur. Phys. J. C, 78, 9, 759 (2018)
[37] Guo, Y. C.; Wang, Y. Y.; Yang, J. C., Nucl. Phys. B, 961, Article 115222 pp. (2020) · Zbl 1472.81259
[38] Guo, Y. C.; Wang, Y. Y.; Yang, J. C.; Yue, C. X., Chin. Phys. C, 44, 12, Article 123105 pp. (2020)
[39] Yang, D.; Mao, Y.; Li, Q.; Liu, S.; Xu, Z.; Ye, K., J. High Energy Phys., 04, Article 108 pp. (2013)
[40] Ye, K.; Yang, D.; Li, Q., Phys. Rev. D, 88, Article 015023 pp. (2013)
[41] Wen, Y.; Qu, H.; Yang, D.; Yan, Q.s.; Li, Q.; Mao, Y., J. High Energy Phys., 03, Article 025 pp. (2015)
[42] Zhu, J. W.; Zhang, R. Y.; Ma, W. G.; Yang, Q.; Jiang, Y., J. Phys. G, 47, 5, Article 055006 pp. (2020)
[43] Ari, V.; Gurkanli, E.; Köksal, M.; Gutiérrez-Rodríguez, A.; Hernández-Ruíz, M. A.
[44] Kepka, O.; Royon, C., Phys. Rev. D, 78, Article 073005 pp. (2008)
[45] Chapon, E.; Royon, C.; Kepka, O.
[46] Chapon, E.; Royon, C.; Kepka, O., Phys. Rev. D, 81, Article 074003 pp. (2010)
[47] Gupta, R. S., Phys. Rev. D, 85, Article 014006 pp. (2012)
[48] Fichet, S.; von Gersdorff, G.; Lenzi, B.; Royon, C.; Saimpert, M., J. High Energy Phys., 02, Article 165 pp. (2015)
[49] Baldenegro, C.; Fichet, S.; von Gersdorff, G.; Royon, C., J. High Energy Phys., 06, Article 142 pp. (2017)
[50] Tizchang, S.; Etesami, S. M., J. High Energy Phys., 07, Article 191 pp. (2020)
[51] Eboli, O. J.P.; Gonzalez-Garcia, M. C.; Novaes, S. F., Nucl. Phys. B, 411, 381-396 (1994)
[52] Eboli, O. J.P.; Magro, M. B.; Mercadante, P. G.; Novaes, S. F., Phys. Rev. D, 52, 15-21 (1995)
[53] Hewett, J. L.; Petriello, F. J., Phys. Rev. D, 64, Article 095017 pp. (2001)
[54] Eboli, O. J.P.; Mizukoshi, J. K., Phys. Rev. D, 64, Article 075011 pp. (2001)
[55] Senol, A.; Köksal, M., Phys. Lett. B, 742, 143-148 (2015)
[56] Barger, V. D.; Han, T.; Phillips, R. J.N., Phys. Rev. D, 39, 146 (1989)
[57] Brunstein, A.; Eboli, O. J.P.; Gonzalez-Garcia, M. C., Phys. Lett. B, 375, 233-239 (1996)
[58] Boos, E.; He, H. J.; Kilian, W.; Pukhov, A.; Yuan, C. P.; Zerwas, P. M., Phys. Rev. D, 57, 1553 (1998)
[59] Boos, E.; He, H. J.; Kilian, W.; Pukhov, A.; Yuan, C. P.; Zerwas, P. M., Phys. Rev. D, 61, Article 077901 pp. (2000)
[60] Han, T.; He, H. J.; Yuan, C. P., Phys. Lett. B, 422, 294-304 (1998)
[61] Eboli, O. J.P.; Gonzalez-Garcia, M. C.; Mizukoshi, J. K., Phys. Rev. D, 58, Article 034008 pp. (1998)
[62] Stirling, W. J.; Werthenbach, A., Eur. Phys. J. C, 14, 103-110 (2000)
[63] Stirling, W. J.; Werthenbach, A., Phys. Lett. B, 466, 369-374 (1999)
[64] Belanger, G.; Boudjema, F.; Kurihara, Y.; Perret-Gallix, D.; Semenov, A., Eur. Phys. J. C, 13, 283-293 (2000)
[65] Gangemi, F.
[66] Denner, A.; Dittmaier, S.; Roth, M.; Wackeroth, D., Eur. Phys. J. C, 20, 201-215 (2001)
[67] Montagna, G.; Moretti, M.; Nicrosini, O.; Osmo, M.; Piccinini, F., Phys. Lett. B, 515, 197-205 (2001)
[68] Köksal, M., Mod. Phys. Lett. A, 29, 34, Article 1450184 pp. (2014)
[69] Zurbano Fernandez, I.; Zobov, M.; Zlobin, A.; Zimmermann, F.; Zerlauth, M.; Zanoni, C.; Zannini, C.; Zagorodnova, O.; Zacharov, I.; Yu, M., High-Luminosity Large Hadron Collider (HL-LHC): technical design report
[70] Abada, A., Eur. Phys. J. Spec. Top., 228, 5, 1109-1382 (2019)
[71] Abada, A., Eur. Phys. J. Spec. Top., 228, 4, 755-1107 (2019)
[72] Eboli, O. J.P.; Gonzalez-Garcia, M. C.; Mizukoshi, J. K., Phys. Rev. D, 74, Article 073005 pp. (2006)
[73] Degrande, C.; Eboli, O.; Feigl, B.; Jäger, B.; Kilian, W.; Mattelaer, O.; Rauch, M.; Reuter, J.; Sekulla, M.; Wackeroth, D.
[74] Baak, M.; Blondel, A.; Bodek, A.; Caputo, R.; Corbett, T.; Degrande, C.; Eboli, O.; Erler, J.; Feigl, B.; Freitas, A.
[75] Arnold, K.; Bahr, M.; Bozzi, G.; Campanario, F.; Englert, C.; Figy, T.; Greiner, N.; Hackstein, C.; Hankele, V.; Jager, B., Comput. Phys. Commun., 180, 1661-1670 (2009) · Zbl 07872407
[76] Alwall, J.; Frederix, R.; Frixione, S.; Hirschi, V.; Maltoni, F.; Mattelaer, O.; Shao, H. S.; Stelzer, T.; Torrielli, P.; Zaro, M., J. High Energy Phys., 07, Article 079 pp. (2014) · Zbl 1402.81011
[77] Alloul, A.; Christensen, N. D.; Degrande, C.; Duhr, C.; Fuks, B., Comput. Phys. Commun., 185, 2250-2300 (2014)
[78] Degrande, C.; Duhr, C.; Fuks, B.; Grellscheid, D.; Mattelaer, O.; Reiter, T., Comput. Phys. Commun., 183, 1201-1214 (2012)
[79] Sjöstrand, T.; Ask, S.; Christiansen, J. R.; Corke, R.; Desai, N.; Ilten, P.; Mrenna, S.; Prestel, S.; Rasmussen, C. O.; Skands, P. Z., Comput. Phys. Commun., 191, 159-177 (2015) · Zbl 1344.81029
[80] de Favereau, J., J. High Energy Phys., 02, Article 057 pp. (2014)
[81] Cacciari, M.; Salam, G. P.; Soyez, G., Eur. Phys. J. C, 72, 1896 (2012) · Zbl 1393.81007
[82] Cacciari, M.; Salam, G. P.; Soyez, G., J. High Energy Phys., 0804, Article 063 pp. (2008)
[83] ATLAS Collaboration, Tech. Rep. ATL-PHYS-PUB-2016-026.
[84] Mangano, M. L.; Ortona, G.; Selvaggi, M., Eur. Phys. J. C, 80, 11, 1030 (2020)
[85] Azzi, P.; Farry, S.; Nason, P.; Tricoli, A.; Zeppenfeld, D.; Abdul Khalek, R.; Alimena, J.; Andari, N.; Aperio Bella, L.; Armbruster, A. J., CERN Yellow Rep. Monogr., 7, 1-220 (2019)
[86] Jager, B.; Salfelder, L.; Worek, M.; Zeppenfeld, D., Phys. Rev. D, 96, 7, Article 073008 pp. (2017)
[87] Bozzi, G.; Campanario, F.; Rauch, M.; Zeppenfeld, D., Phys. Rev. D, 84, Article 074028 pp. (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.