×

Automated feature selection procedure for particle jet classification. (English) Zbl 1522.81779

Summary: The high dimensionality of the data produced in high-energy physics experiments makes the use of machine learning algorithms, such as neural networks, necessary to improve the performance of reconstruction and classification of the analyzed events. Interpretability, i.e. the capability to explain the dynamics that lead the network to a certain outcome, emerged as a major need with architectures growing in complexity. In the analysis of pp collisions at the LHC, explainability firstly concern the assessment of the relative importance of high-level observables used to classify events. In this context, we have developed a method to select the most important features associated with a particle jet of which we want to establish the origin. Features are importance-sorted with a decision tree algorithm. A \(k\)-fold cross-validation is applied to raise the confidence in the extracted ranking. We tested the method with the case of highly boosted di-jet resonances decaying to two \(b\)-quarks, to be selected against an overwhelming QCD background with a Deep Neural network. We show that noisy and irrelevant features are rejected while relevant features occupy the top-ranking positions.

MSC:

81V35 Nuclear physics
81U35 Inelastic and multichannel quantum scattering
68T07 Artificial neural networks and deep learning
62M45 Neural nets and related approaches to inference from stochastic processes
81V05 Strong interaction, including quantum chromodynamics
81-05 Experimental work for problems pertaining to quantum theory

References:

[1] Krizhevsky, A.; Sutskever, I.; Hinton, G. E., ImageNet classification with deep convolutional neural networks, (Proceedings of the 25th International Conference on Neural Information Processing Systems - vol. 1. Proceedings of the 25th International Conference on Neural Information Processing Systems - vol. 1, NIPS’12 (2012), Curran Associates Inc.: Curran Associates Inc. Red Hook, NY, USA), 1097-1105
[2] Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M., Imagenet large scale visual recognition challenge, Int. J. Comput. Vis., 115, 3, 211-252 (2015)
[3] Guest, D.; Cranmer, K.; Whiteson, D., Deep learning and its application to LHC physics, Annu. Rev. Nucl. Part. Sci., 68, 1, 161-181 (2018)
[4] Vilone, G.; Longo, L., Explainable artificial intelligence: a systematic review (2020)
[5] Barredo Arrieta, A.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; Garcia, S.; Gil-Lopez, S.; Molina, D.; Benjamins, R.; Chatila, R.; Herrera, F., Explainable Artificial Intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI, Inf. Fusion, 58, 82-115 (2020)
[6] Goodfellow, I. J.; Shlens, J.; Szegedy, C., Explaining and harnessing adversarial examples (2014), arXiv preprint
[7] Nachman, B.; Shimmin, C., AI safety for high energy physics (2019), arXiv preprint
[8] Han, J.; Pei, J.; Kamber, M., Data Mining: Concepts and Techniques, The Morgan Kaufmann Series in Data Management Systems (2011), Elsevier Science
[9] Friedman, J.; Hastie, T.; Tibshirani, R., The Elements of Statistical Learning, vol. 1, Springer Series in Statistics New York (2001) · Zbl 0973.62007
[10] Campbell, J. M.; Huston, J.; Stirling, W., Hard interactions of quarks and gluons: a primer for LHC physics, Rep. Prog. Phys., 70, 89 (2007)
[11] de Florian, D., Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector 2/2017 (2016)
[12] Grazzini, M.; Ilnicka, A.; Spira, M.; Wiesemann, M., Modeling BSM effects on the Higgs transverse-momentum spectrum in an EFT approach, J. High Energy Phys., 03, Article 115 pp. (2017)
[13] Kogler, R.; Nachman, B.; Schmidt, A.; Asquith, L.; Winkels, E.; Campanelli, M.; Delitzsch, C.; Harris, P.; Hinzmann, A.; Kar, D., Jet substructure at the Large Hadron Collider, Rev. Mod. Phys., 91, 4 (Dec. 2019)
[14] Sjöstrand, T.; Ask, S.; Christiansen, J. R.; Corke, R.; Desai, N.; Ilten, P.; Mrenna, S.; Prestel, S.; Rasmussen, C. O.; Skands, P. Z., An introduction to PYTHIA 8.2, Comput. Phys. Commun., 191, 159-177 (2015) · Zbl 1344.81029
[15] de Favereau, J.; Delaere, C.; Demin, P.; Giammanco, A.; Lemaître, V.; Mertens, A.; Selvaggi, M., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, J. High Energy Phys., 02, Article 057 pp. (2014)
[16] Waltenberger, W.; Moser, F., Rave - an open, extensible, detector-independent toolkit for reconstruction of interaction vertices, (2006 IEEE Nuclear Science Symposium Conference Record, vol. 1 (2006)), 104-109
[17] The ATLAS experiment at the CERN Large Hadron Collider, J. Instrum., 3, 08, Article S08003 pp. (2008)
[18] Cacciari, M.; Salam, G. P.; Soyez, G., The anti-ktjet clustering algorithm, J. High Energy Phys., 2008, 04, Article 063 pp. (2008) · Zbl 1369.81100
[19] Krohn, D.; Thaler, J.; Wang, L.-T., Jets with variable R, J. High Energy Phys., 06, Article 059 pp. (2009)
[20] Cacciari, M.; Salam, G. P.; Soyez, G., FastJet user manual, Eur. Phys. J. C, 72, 1896 (2012) · Zbl 1393.81007
[21] FastJet contrib.
[22] Berger, C. F.; Kúcs, T.; Sterman, G., Event shape-energy flow correlations, Phys. Rev. D, 68, 1 (Jul. 2003)
[23] Chen, C., New approach to identifying boosted hadronically decaying particles using jet substructure in its center-of-mass frame, Phys. Rev. D, 85, 3 (Feb. 2012)
[24] Almeida, L. G.; Lee, S. J.; Perez, G.; Sterman, G.; Sung, I.; Virzi, J., Substructure of high-pTjets at the LHC, Phys. Rev. D, 79, 7 (Apr. 2009)
[25] Thaler, J.; Van Tilburg, K., Identifying boosted objects with N-subjettiness, J. High Energy Phys., 2011, 3 (Mar. 2011)
[26] Larkoski, A. J.; Salam, G. P.; Thaler, J., Energy correlation functions for jet substructure, J. High Energy Phys., 2013, 6 (Jun. 2013) · Zbl 1342.81689
[27] (Jul. 2015), CERN: CERN Geneva, Expected performance of the ATLAS b-tagging algorithms in Run-2, Tech. Rep. ATL-PHYS-PUB-2015-022
[28] Frühwirth, R., Application of Kalman filtering to track and vertex fitting, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip., 262, 2, 444-450 (1987)
[29] (Sep. 2017), CERN: CERN Geneva, Technical Design Report for the Phase-II Upgrade of the ATLAS TDAQ System, Tech. Rep. CERN-LHCC-2017-020. ATLAS-TDR-029
[30] Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A. V.; Gulin, A., CatBoost: unbiased boosting with categorical features (2018), pp. 6638-6648
[31] Morgan, N.; Bourlard, H., Generalization and parameter estimation in feedforward nets: some experiments, Adv. Neural Inf. Process. Syst., 2, 630-637 (1989)
[32] (Jul. 2017), CERN: CERN Geneva, Optimisation and performance studies of the ATLAS b-tagging algorithms for the 2017-18 LHC run, Tech. rep.
[33] Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; Desmaison, A.; Kopf, A.; Yang, E.; DeVito, Z.; Raison, M.; Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai, J.; Chintala, S., PyTorch: an imperative style, high-performance deep learning library (2019), pp. 8024-8035
[34] Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R., Dropout: a simple way to prevent neural networks from overfitting, J. Mach. Learn. Res., 15, 1, 1929-1958 (2014) · Zbl 1318.68153
[35] Kingma, D. P.; Ba, J., Adam: a method for stochastic optimization (2014)
[36] Breiman, L., Random forests, Mach. Learn., 45, 1, 5-32 (2001) · Zbl 1007.68152
[37] Louppe, G.; Wehenkel, L.; Sutera, A.; Geurts, P., Understanding variable importances in forests of randomized trees, (Advances in Neural Information Processing Systems (2013)), 431-439
[38] Lundberg, S. M.; Lee, S.-I., A unified approach to interpreting model predictions, (Guyon, I.; Luxburg, U. V.; Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan, S.; Garnett, R., Advances in Neural Information Processing Systems, vol. 30 (2017), Curran Associates, Inc.), 4765-4774
[39] Butcher, B.; Smith, B. J., Feature Engineering and Selection: A Practical Approach for Predictive Models: by Max Kuhn and Kjell Johnson (2019), Chapman & Hall/CRC Press: Chapman & Hall/CRC Press Boca Raton, FL, xv+297 pp., 79.95 (H) (2020)
[40] (Kirch, W., Pearson’s Correlation Coefficient (2008), Springer Netherlands: Springer Netherlands Dordrecht), 1090-1091
[41] Camplani, A., ATLAS Trigger and Data Acquisition Upgrades for the High Luminosity LHC (Sep. 2019), CERN: CERN Geneva, Tech. rep.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.