×

Classification of two-qubit states. (English) Zbl 1333.81099

Summary: Verstraete, Dehaene and DeMoor showed that each of the two-qubit states can be generated from one of two canonical families of two-qubit states by means of transformations preserving the tensor structure of the state space. Precisely, each of such states can be generated from a three-parameter family of Bell-diagonal states or from three-parameter rank-deficient states. In this paper, we show that this classification of two-qubit states can be refined. In particular, we show that the latter canonical family of states can be reduced to three fixed states and a two-parameter family of two-qubit states. For this family of states, we provide a simple parametrization that guarantees positive semidefiniteness of the states and enables easier calculation of the Wootters concurrence and quantum discord. Moreover, we present a new general parametrization of all two-qubit states generated from the canonical families of states using sets of (pseudo)orthogonal four-vectors (frames). An advantage of the presented approach lies in the fact that the standard conditions for positive semidefiniteness of states are equivalent to (pseudo)orthogonality conditions for four-vectors serving as parameters (and appropriate conditions for parameters of the corresponding canonical family of states).

MSC:

81P68 Quantum computation
81P40 Quantum coherence, entanglement, quantum correlations
81P15 Quantum measurement theory, state operations, state preparations

References:

[1] Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009) · Zbl 1205.81012 · doi:10.1103/RevModPhys.81.865
[2] Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012) · doi:10.1103/RevModPhys.84.1655
[3] Caban, P., Podlaski, K., Rembieliński, J., Smoliński, K.A., Walczak, Z.: Entanglement and tensor product decomposition for two fermions. J. Phys. A Math. Gen. 38, L79 (2005) · Zbl 1065.81521 · doi:10.1088/0305-4470/38/6/L02
[4] Verstraete, F., Dehaene, J., DeMoor, B.: Local filtering operations on two qubits. Phys. Rev. A 64, 010101(R) (2001) · doi:10.1103/PhysRevA.64.010101
[5] Bengtsson, I., Życzkowski, K.: Geometry of Quantum States. Cambridge University Press, Cambridge (2006) · Zbl 1146.81004 · doi:10.1017/CBO9780511535048
[6] Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998) · Zbl 1368.81047 · doi:10.1103/PhysRevLett.80.2245
[7] Olivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2002) · Zbl 1255.81071 · doi:10.1103/PhysRevLett.88.017901
[8] Luo, S., Fu, S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010) · Zbl 1255.81092 · doi:10.1103/PhysRevA.82.034302
[9] Okrasa, M., Walczak, Z.: Quantum discord and multipartite correlations. EPL 96, 60003 (2011) · doi:10.1209/0295-5075/96/60003
[10] Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008) · doi:10.1103/PhysRevA.77.042303
[11] Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010) · doi:10.1103/PhysRevA.81.042105
[12] Huang, Y.: Quantum discord for two-qubit X states: analytical formula with very small worst-case error. Phys. Rev. A 88, 014302 (2013) · doi:10.1103/PhysRevA.88.014302
[13] Giorda, P., Paris, M.G.A.: Gaussian quantum discord. Phys. Rev. Lett. 105, 020503 (2010) · doi:10.1103/PhysRevLett.105.020503
[14] Adesso, G., Datta, A.: Quantum versus classical correlations in Gaussian states. Phys. Rev. Lett. 105, 030501 (2010) · doi:10.1103/PhysRevLett.105.030501
[15] Li, B., Wang, Z.X., Fei, S.M.: Quantum discord and geometry for a class of two-qubit states. Phys. Rev. A 83, 022321 (2011) · doi:10.1103/PhysRevA.83.022321
[16] Chitambar, E.: Quantum correlations in high-dimensional states of high symmetry. Phys. Rev. A 86, 032110 (2012) · doi:10.1103/PhysRevA.86.032110
[17] Huang, Y.: Computing quantum discord is NP-complete. New J. Phys. 16, 033027 (2014) · Zbl 1451.81107 · doi:10.1088/1367-2630/16/3/033027
[18] Girolami, D., Adesso, G.: Quantum discord for general two-qubit states: analytical progress. Phys. Rev. A 83, 052108 (2011) · doi:10.1103/PhysRevA.83.052108
[19] Gohberg, I., Lancaster, P., Rodman, L.: Indefinite Linear Algebra and Applications. Birkhäuser, Basel-Boston-Berlin (2005) · Zbl 1084.15005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.