×

The 2D Gross-Neveu model for pseudovector fermions and tachyonic mass generation. (English) Zbl 1327.81289

Summary: Based on early theoretical work on tachyonic fermions we shall study a modification of the Gross-Neveu model in two dimensions. We shall see that the theory results to the dynamical generation of real and imaginary masses. These imaginary masses indicate the possibility that tachyonic solutions (or instabilities) could exist in the theory. The implications of a tachyonic neutrino coming from astrophysical sources are critically discussed. Moreover, we present a toy model that consists of an \(U(2, 2)\) invariant Dirac Lagrangian. This theory can have tachyonic masses as solutions. A natural mass splitting between the solutions is a natural outcome of the formalism.

MSC:

81V05 Strong interaction, including quantum chromodynamics
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81V15 Weak interaction in quantum theory

References:

[1] DOI: 10.1088/1475-7516/2011/11/026 · doi:10.1088/1475-7516/2011/11/026
[2] DOI: 10.1088/0031-8949/85/03/035101 · doi:10.1088/0031-8949/85/03/035101
[3] DOI: 10.1016/j.nuclphysb.2012.03.008 · Zbl 1246.81465 · doi:10.1016/j.nuclphysb.2012.03.008
[4] DOI: 10.1007/JHEP02(2012)134 · Zbl 1309.81297 · doi:10.1007/JHEP02(2012)134
[5] DOI: 10.1016/j.physletb.2011.11.037 · doi:10.1016/j.physletb.2011.11.037
[6] DOI: 10.1103/PhysRevD.86.023531 · doi:10.1103/PhysRevD.86.023531
[7] DOI: 10.1142/S0217732312501271 · doi:10.1142/S0217732312501271
[8] DOI: 10.1088/0954-3899/39/8/085002 · doi:10.1088/0954-3899/39/8/085002
[9] Matone M., Annales Fond. Broglie 37 pp 177– (2012)
[10] DOI: 10.1142/S0217732312500587 · Zbl 1274.81271 · doi:10.1142/S0217732312500587
[11] DOI: 10.1088/1751-8113/45/44/444017 · Zbl 1263.81165 · doi:10.1088/1751-8113/45/44/444017
[12] DOI: 10.1088/0954-3899/39/4/045010 · doi:10.1088/0954-3899/39/4/045010
[13] DOI: 10.1016/0370-2693(85)90460-5 · doi:10.1016/0370-2693(85)90460-5
[14] DOI: 10.1142/S0217732392000422 · doi:10.1142/S0217732392000422
[15] DOI: 10.1016/0370-2693(94)90535-5 · doi:10.1016/0370-2693(94)90535-5
[16] DOI: 10.1007/s10702-006-1015-4 · Zbl 1116.83302 · doi:10.1007/s10702-006-1015-4
[17] DOI: 10.1142/S0217751X97001122 · Zbl 1072.81571 · doi:10.1142/S0217751X97001122
[18] DOI: 10.1103/PhysRevD.72.095017 · doi:10.1103/PhysRevD.72.095017
[19] DOI: 10.1103/PhysRevD.80.093005 · doi:10.1103/PhysRevD.80.093005
[20] DOI: 10.1142/S0217732397002156 · doi:10.1142/S0217732397002156
[21] DOI: 10.1016/j.physletb.2005.02.053 · doi:10.1016/j.physletb.2005.02.053
[22] DOI: 10.1016/S0370-1573(03)00263-1 · Zbl 1031.81065 · doi:10.1016/S0370-1573(03)00263-1
[23] DOI: 10.1103/PhysRevLett.94.221302 · doi:10.1103/PhysRevLett.94.221302
[24] Wheeler J. A., Geometrodynamics (1962) · Zbl 0124.22207
[25] Pal P. B., Massive Neutrinos in Physics and Astrophysics (1991)
[26] DOI: 10.1119/1.1941773 · doi:10.1119/1.1941773
[27] DOI: 10.1007/978-3-662-02753-0 · doi:10.1007/978-3-662-02753-0
[28] DOI: 10.1016/S0034-4877(97)84890-2 · Zbl 0884.53073 · doi:10.1016/S0034-4877(97)84890-2
[29] DOI: 10.1016/S0370-1573(01)00015-1 · Zbl 0972.81212 · doi:10.1016/S0370-1573(01)00015-1
[30] DOI: 10.1088/1751-8113/41/30/304040 · Zbl 1152.81872 · doi:10.1088/1751-8113/41/30/304040
[31] DOI: 10.1142/S0217751X89001825 · doi:10.1142/S0217751X89001825
[32] DOI: 10.1142/S0129055X09003712 · Zbl 1181.81094 · doi:10.1142/S0129055X09003712
[33] DOI: 10.1143/PTPS.127.93 · doi:10.1143/PTPS.127.93
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.