×

Accurate evaluation of the cubic lattice Green functions using binomial expansion theorems. (English) Zbl 1160.82350

Summary: A new, simple, and efficient technique for the accurate evaluation of the lattice Green functions is presented. Using binomial expansion theorems, these functions are expressed through the binomial coefficients and basic integrals. The extensive test calculations show that the proposed algorithm in this work is the most efficient method in practical computations. Finally, in order to show the practical use of analytical expressions found some computation examples and comparisons with literature are made.

MSC:

82D20 Statistical mechanics of solids
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics

References:

[1] Economou, E.N.: Green Function in Quantum Physics, 2nd edn. Springer, Berlin (1983)
[2] Brout, R.: Statistical mechanical theory of ferromagnetism. High density behavior. Phys. Rev. 118, 1009–1019 (1960) · Zbl 0102.43601 · doi:10.1103/PhysRev.118.1009
[3] Dalton, N.W., Wood, D.W.: Critical behaviour of the simple anisotropic Heisenberg model. Proc. Phys. Soc. (Lond.) 90, 459–475 (1967) · doi:10.1088/0370-1328/90/2/316
[4] Lax, M.: Molecular field in the spherical model. Phys. Rev. 97, 629–640 (1955) · Zbl 0064.23901 · doi:10.1103/PhysRev.97.629
[5] Kato, N.: A foundation for the statistical dynamical theory of diffraction. Acta Crystallogr. A 47, 1–11 (1991) · Zbl 1188.78005 · doi:10.1107/S0108767390008790
[6] Montroll, E.W.: Random walks in multidimensional spaces, especially on periodic lattices. SIAM J. Appl. Math. 4, 241–260 (1956) · Zbl 0080.35101 · doi:10.1137/0104014
[7] Koster, G.F., Slater, D.C.: Simplified impurity calculation. Phys. Rev. 96, 1208–1223 (1954) · Zbl 0056.45203 · doi:10.1103/PhysRev.96.1208
[8] Wachniewski, A.: Lattice Green’s function for thin films. The S.C.(001) thin film Green’s function. Phys. Status Solidi B 104, 555–562 (1981) · doi:10.1002/pssb.2221040220
[9] Li, Q., Soukoulis, C., Economou, E.N., Grest, G.S.: Anisotropic tight-binding model for localization. Phys. Rev. B 40, 2825–2830 (1989) · doi:10.1103/PhysRevB.40.2825
[10] Heiner, E., Schneider, J.: A polynomial approximation for the imaginary part of the lattice Green’s function for the simple cubic lattice. Phys. Status Solidi B 49, K37–K39 (1972) · doi:10.1002/pssb.2220490145
[11] Watson, G.N.: Three triple integrals. Q. J. Math. 10, 266–276 (1939) · Zbl 0022.33202 · doi:10.1093/qmath/os-10.1.266
[12] Inoue, M.: Lattice Green’s function for the body-centered cubic lattice. J. Math. Phys. 16, 809–812 (1975) · Zbl 0303.33001 · doi:10.1063/1.522609
[13] Joyce, G.S.: Lattice Green function for the anisotropic face centred cubic lattice. J. Phys. C: Solid State Phys. 4, L53–L56 (1971) · doi:10.1088/0022-3719/4/3/015
[14] Joyce, G.S.: Exact evaluation of the body centred cubic lattice Green function. J. Phys. C: Solid State Phys. 4, 1510–1512 (1971) · doi:10.1088/0022-3719/4/12/008
[15] Joyce, G.S.: On the simple cubic lattice Green function. Philos. Trans. R. Soc. A 273, 583–610 (1973) · Zbl 0267.33009 · doi:10.1098/rsta.1973.0018
[16] Joyce, G.S.: On the cubic lattice Green functions. Proc. R. Soc. A 445, 463–467 (1994) · Zbl 0808.33015 · doi:10.1098/rspa.1994.0072
[17] Glasser, M.L.: Closed form expressions for a class of lattice Green functions. J. Phys.: Conf. Ser. 42, 95–97 (2006) · doi:10.1088/1742-6596/42/1/010
[18] Joyce, G.S.: Singular behaviour of the cubic lattice Green functions and associated integrals. J. Phys. A: Math. Gen. 34, 3831–3839 (2001) · Zbl 0995.82520 · doi:10.1088/0305-4470/34/18/311
[19] Joyce, G.S.: On the cubic modular transformation and the cubic lattice Green functions. J. Phys. A: Math. Gen. 31, 5105–5115 (1998) · Zbl 0940.33012 · doi:10.1088/0305-4470/31/22/011
[20] Joyce, G.S., Delves, R.T., Zucker, I.J.: Exact evaluation of the Green functions for the anisotropic face-centred and simple cubic lattices. J. Phys. A: Math. Gen. 36, 8661–8672 (2003) · Zbl 1049.82066 · doi:10.1088/0305-4470/36/32/307
[21] Joyce, G.S.: Evaluation of the Watson integral and associated logarithmic integral for the d-dimensional hypercubic lattice. J. Phys. A: Math. Gen. 34, 7349–7354 (2001) · Zbl 1001.33011 · doi:10.1088/0305-4470/34/36/314
[22] Joyce, G.S.: Exact evaluation of the simple cubic lattice Green function for a general lattice point. J. Phys. A: Math. Gen. 35, 9811–9828 (2002) · Zbl 1038.82016 · doi:10.1088/0305-4470/35/46/307
[23] Joyce, G.S., Delves, R.T.: The product forms for the simple cubic lattice Green function II. J. Phys. A: Math. Gen. 37, 5417–5447 (2004) · Zbl 1129.33011 · doi:10.1088/0305-4470/37/20/012
[24] Joyce, G.S., Delves, R.T.: The product forms for the simple cubic lattice Green function I. J. Phys. A: Math. Gen. 37, 3645–3671 (2004) · Zbl 1050.33020 · doi:10.1088/0305-4470/37/11/008
[25] Guseinov, I.I., Mamedov, B.A.: A Unified treatment of the lattice Green function, generalized Watson integral and associated logarithmic integral for the d-dimensional hypercubic lattice. Philos. Mag. 87, 1107 (2007) · doi:10.1080/14786430601023799
[26] Delves, R.T., Joyce, G.S.: On the Green function for the anisotropic simple cubic lattice. Ann. Phys. 291, 71–133 (2001) · Zbl 1051.82011 · doi:10.1006/aphy.2001.6148
[27] Delves, R.T., Joyce, G.S.: Exact evaluation of the Green function for the anisotropic simple cubic lattice. J. Phys. A: Math. Gen. 34, L59–L65 (2001) · Zbl 0978.82014 · doi:10.1088/0305-4470/34/8/101
[28] Katsura, S., Horiguchi, T.: Lattice Green’s function for the body-centered cubic lattice. J. Math. Phys. 12, 230–231 (1971) · Zbl 0272.33007 · doi:10.1063/1.1665581
[29] Mano, K.: Remarks on the Green’s functions for the cubic lattices. J. Math. Phys. 16, 1726–1728 (1975) · Zbl 0306.39002 · doi:10.1063/1.522770
[30] Morita, T.: Useful procedure for computing the lattice Green’s function-square, tetragonal, and bcc lattices. J. Math. Phys. 12, 1744–1747 (1971) · doi:10.1063/1.1665800
[31] Morita, T., Horiguci, T.: Calculation of the lattice Green’s function for the bcc, fcc, and rectangular lattices. J. Math. Phys. 12, 986–992 (1971) · Zbl 0218.35017 · doi:10.1063/1.1665693
[32] Sakaji, A., Hijjawi, R.S., Shawagfeh, N., Khalifeh, J.M.: Int. J. Theor. Phys. 41, 973 (2002) · Zbl 0996.81067 · doi:10.1023/A:1015753428116
[33] Sakaji, A., Hijjawi, R.S., Shawagfeh, N., Khalifeh, J.M.: Lattice Green’s function for the body-centered cubic lattice. Int. J. Theor. Phys. 41, 973–983 (2002) · Zbl 0996.81067 · doi:10.1023/A:1015753428116
[34] Glasser, M.L., Boersma, J.: Exact values for the cubic lattice Green functions. J. Phys. A: Math. Gen. 33, 5017–5023 (2000) · Zbl 0973.82010 · doi:10.1088/0305-4470/33/28/306
[35] Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Sums, Series and Product, 4th edn. Academic Press, San Diego (1980) · Zbl 0521.33001
[36] Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions. Dover, New York (1972) · Zbl 0543.33001
[37] Guseinov, I.I., Mamedov, B.A.: Evaluation of overlap integrals with integer and noninteger n Slater-type orbitals using auxiliary functions. J. Mol. Mod. 8, 272–276 (2002) · doi:10.1007/s00894-002-0098-5
[38] Guseinov, I.I., Mamedov, B.A.: Evaluation of incomplete gamma functions using downward recursion and analytical relations. J. Math. Chem. 36, 341–346 (2004) · Zbl 1059.81187 · doi:10.1023/B:JOMC.0000044521.18885.d3
[39] Mamedov, B.A., Tapramaz, R., Merdan, Z.: Calculation of generalized elliptic type integrals using the binomial expansion theorem. Appl. Math. Comput. 168, 333–341 (2005) · Zbl 1082.65515 · doi:10.1016/j.amc.2004.09.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.