×

Optimal expected exponential utility of divident payments in Brownian risk model. (English) Zbl 1164.62080

Suppose the wealth of an insurance company is modeled by a Brownian motion \(R_t, t\geq 0\), with drift, \(C_t,\;t\geq 0\) denotes the accumulated dividend process, and \(X_t=R_t - C_t\). Let \(\tau = \inf \{t: X_t\leq 0\}\) be the time of ruin under the dividend policy \(C\). The authors consider the following optimization problem: \[ \max _C E[U(\int_0^{\infty} \exp(-\beta t)dC_t)],\;\text{where}\;U(t)=(1-\exp(-\gamma x))/\gamma, \] i.e., they want to maximize the expected exponential utility of discount dividend payments. Here \(U(t)\) denotes the utility function with the risk aversion parameter \(\gamma\), and \(\beta\) is a discount factor.
It is shown that if a certain integral equation has a solution then the optimal strategy is a barrier strategy. The barrier function is a solution of this integral equation and turns out to be time-dependent. In addition, the authors study the optimization problem from a different point of view, namely by using a certain series ansatz for the boundary and value functions. They obtain recursions for the coefficients of the series, and numerical experiments indicate that such series produce meaningful results.

MSC:

62P05 Applications of statistics to actuarial sciences and financial mathematics
91B30 Risk theory, insurance (MSC2010)
49N90 Applications of optimal control and differential games
60J65 Brownian motion
91B16 Utility theory
90C39 Dynamic programming
91B28 Finance etc. (MSC2000)
Full Text: DOI

References:

[1] DOI: 10.1007/s00607-001-1447-4 · Zbl 1076.91521 · doi:10.1007/s00607-001-1447-4
[2] Amann H., Function spaces, differential operators and nonlinear analysis pp 9– (1993) · doi:10.1007/978-3-663-11336-2_1
[3] DOI: 10.1016/S0167-6687(96)00017-0 · Zbl 1065.91529 · doi:10.1016/S0167-6687(96)00017-0
[4] DOI: 10.1016/0022-247X(92)90009-3 · Zbl 0768.34039 · doi:10.1016/0022-247X(92)90009-3
[5] DOI: 10.1007/BF02411952 · Zbl 0471.35036 · doi:10.1007/BF02411952
[6] Fleming W. H., Controlled Markov processes and viscosity solutions (1993) · Zbl 0773.60070
[7] DOI: 10.1090/S0002-9947-1971-0283623-9 · doi:10.1090/S0002-9947-1971-0283623-9
[8] DOI: 10.1214/aoap/1060202834 · Zbl 1046.62113 · doi:10.1214/aoap/1060202834
[9] Gerber H., Schweiz Verein Versicherungsmath Mitt. 69 pp 185– (1969)
[10] Gerber H.U., Scandinavica Actuaria J pp 105– (1981) · Zbl 0455.62086 · doi:10.1080/03461238.1981.10413735
[11] Gerber H.U., North American Actuarial Journal 8 pp 1– (2004) · Zbl 1085.62122 · doi:10.1080/10920277.2004.10596125
[12] DOI: 10.1007/s00245-004-0791-0 · Zbl 1112.91039 · doi:10.1007/s00245-004-0791-0
[13] DOI: 10.1016/S0167-6687(00)00049-4 · Zbl 1007.91025 · doi:10.1016/S0167-6687(00)00049-4
[14] DOI: 10.1016/j.insmatheco.2003.12.001 · Zbl 1136.91481 · doi:10.1016/j.insmatheco.2003.12.001
[15] DOI: 10.1016/S0304-4149(01)00148-X · Zbl 1058.60095 · doi:10.1016/S0304-4149(01)00148-X
[16] Lions J.-L., Non-homogeneous boundary value problems and applications (1972) · Zbl 0223.35039
[17] DOI: 10.1214/aoap/1037125862 · Zbl 1019.60041 · doi:10.1214/aoap/1037125862
[18] DOI: 10.1007/BF01432886 · Zbl 0267.35053 · doi:10.1007/BF01432886
[19] Renardy M., An introduction to partial differential equations (1993) · Zbl 0917.35001
[20] DOI: 10.1016/j.insmatheco.2004.09.002 · Zbl 1110.91019 · doi:10.1016/j.insmatheco.2004.09.002
[21] Schuss Z., Archives of Rational and Mechanical Analysis 46 pp 200– (1972) · Zbl 0247.35063 · doi:10.1007/BF00252459
[22] DOI: 10.1137/0322005 · Zbl 0535.93071 · doi:10.1137/0322005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.