×

Dynamic anti-plane fracture in arbitrary directions in a monoclinic anisotropic solid. (English) Zbl 1075.74035

Summary: An unbounded anisotropic solid has a single plane of material symmetry, and a semi-infinite anti-plane (mode III) crack extends at a subsonic constant speed in an arbitrary direction in that plane. The exact solution for steady motion gives a dynamic stress intensity factor on planes radiating from the moving crack edge that achieves an invariant value when the plane lies directly ahead of the crack edge. The possibility that this value is a local maximum arises only for crack planes associated with the maximum and minimum values of the shear wave speed. For such planes, increasing the degree of non-orthotropy is found to increase the disparity between the maximum and minimum speeds. Calculations for such planes, moreover, show that nonorthotropy can restrict the speeds for which extension stability arises on planes of maximum shear wave speed. On the other hand, it also enhances fracture energy dissipation rates, especially on planes of minimum shear wave speed.

MSC:

74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74E10 Anisotropy in solid mechanics
74H35 Singularities, blow-up, stress concentrations for dynamical problems in solid mechanics
Full Text: DOI

References:

[1] Hayes, M., Proceedings of the Royal Society of LondonA 274 pp 500– (1963) · Zbl 0112.40501 · doi:10.1098/rspa.1963.0146
[2] Kraut, E. A., Reviews of Geophysics 1 pp 401– (1963) · doi:10.1029/RG001i003p00401
[3] Payton, R. G., Elastic Wave Propagation in Transversely Isotropic Media (1983) · Zbl 0574.73023 · doi:10.1007/978-94-009-6866-0
[4] Ting, T. C. T., Anisotropic Elasticity (1996)
[5] Burridge, R., Proceedings of the Cambridge Philosophical Society 66 pp 443– (1969) · doi:10.1017/S0305004100045199
[6] Broberg, K. B., International Journal of Fracture 99 pp 1– (1999) · doi:10.1023/A:1018324530191
[7] Brock, L. M., ASME Journal of Applied Mechanics 70 pp 227– (2003) · Zbl 1110.74355 · doi:10.1115/1.1533807
[8] Brock, L. M., Mathematics and Mechanics of Solids 7 pp 503– (2002) · Zbl 1072.74014 · doi:10.1177/108128650200700503
[9] Burgers, P., ASME Journal of Applied Mechanics 49 pp 366– (1982) · Zbl 0485.73081 · doi:10.1115/1.3162095
[10] Dempsey, J. P., Wave Motion 4 pp 181– (1982) · Zbl 0479.73092 · doi:10.1016/0165-2125(82)90034-8
[11] Eshelby, J. D., Acta Metallurgica 1 pp 251– (1953) · doi:10.1016/0001-6160(53)90099-6
[12] Sokolnikoff, I. S., Mathematical Theory of Elasticity (1956) · Zbl 0070.41104
[13] Nye, J. F., Physical Properties of Crystals, Their Representation by Tensors and Matrices (1957) · Zbl 0079.22601
[14] Theocaris, P. S., Acta Crystallographica A 56 pp 316– (2000)
[15] Achenbach, J. D., Elastic Wave Propagation in Elastic Solids (1973) · Zbl 0268.73005
[16] van der Pol, B., Operational Calculus Based on the Two-Sided Laplace Integral (1950) · Zbl 0040.20403
[17] Carrier, G. F., Functions of a Complex Variable (1966)
[18] Ewalds, H. L., Fracture Mechanics (1985)
[19] Freund, L.B., Dynamic Fracture Mechanics (1993) · Zbl 0712.73072
[20] Gdoutos, E. E., Fracture Mechanics Criteria and Applications (1990) · Zbl 0726.73052 · doi:10.1007/978-94-009-1956-3
[21] Sneddon, I. N., Crack Problems in the Classical Theory of Elasticity (1969) · Zbl 0201.26702
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.