×

Range identification for nonlinear parameterizable paracatadioptric systems. (English) Zbl 1194.93212

Summary: A new range identification technique for a calibrated paracatadioptric system mounted on a moving platform is developed to recover the range information and the three-dimensional (3D) Euclidean coordinates of a static object feature. The position of the moving platform is assumed to be measurable. To identify the unknown range, first, a function of the projected pixel coordinates is related to the unknown 3D Euclidean coordinates of an object feature. This function is nonlinearly parameterized (\(i.e.\), the unknown parameters appear nonlinearly in the parameterized model). An adaptive estimator based on a min-max algorithm is then designed to estimate the unknown 3D Euclidean coordinates of an object feature relative to a fixed reference frame which facilitates the identification of range. A Lyapunov-type stability analysis is used to show that the developed estimator provides an estimation of the unknown parameters within a desired precision. Numerical simulation results are presented to illustrate the effectiveness of the proposed range estimation technique.

MSC:

93E12 Identification in stochastic control theory
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory

References:

[1] Annaswamy, A. M.; Skantze, F. P.; Loh, A. P., Adaptive control of continuous time systems with convex/concave parameterization, Automatica, 34, 1, 33-49 (1998) · Zbl 0910.93049
[2] Baker, S.; Nayar, S., A theory of single-viewpoint catadioptric image formation, International Journal of Computer Vision, 35, 2, 175-196 (1999)
[3] Barreto, J. P.; Araujo, H., Geometric properties of central catadioptric line images and their application in calibration, IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 8, 1327-1333 (2005)
[4] Boskovic, J. D., Some remarks on adaptive neuro-fuzzy systems, International Journal on Adaptive Control Signal Processing, 10, 79-83 (1996) · Zbl 0850.93457
[5] Boyd, S.; Vandenberghe, L., Convex optimization (2004), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 1058.90049
[6] Cao, C.; Annaswamy, A. M.; Kojic, A., Parameter convergence in nonlinearly parameterized systems, IEEE Transactions on Automatic Control, 48, 3, 397-412 (2003) · Zbl 1364.93760
[7] Chen, X.; Kano, H., A new state observer for perspective systems, IEEE Transactions on Automatic Control, 47, 4, 658-663 (2002) · Zbl 1364.93082
[8] Chen, X.; Kano, H., State observer for a class of nonlinear systems and its application to machine vision, IEEE Transactions on Automatic Control, 49, 11, 2085-2091 (2004) · Zbl 1365.93052
[9] Chiuso, A.; Favaro, P.; Jin, H.; Soatto, S., Structure from motion casually integrated over time, IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 4, 523-535 (2002)
[10] Dixon, W. E.; Fang, Y.; Dawson, D. M.; Flynn, T. J., Range identification for perspective vision systems, IEEE Transactions on Automatic Control, 48, 12, 2232-2238 (2003) · Zbl 1364.93827
[11] Fomin, V.; Fradkov, A.; Yakubovich, V., Adaptive control of dynamical systems (1981), Nauka: Nauka Moscow, Russia · Zbl 0522.93002
[13] Geyer, C.; Daniilidis, K., Paracatadioptric camera calibration, IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 5, 687-695 (2002)
[15] Hu, G.; Aiken, D.; Gupta, S.; Dixon, W., Lyapunov-based range identification for paracatadioptric systems, IEEE Transactions on Automatic Control, 53, 7, 1775-1781 (2008) · Zbl 1367.93091
[16] Ioannou, P. A.; Sun, J., Robust adaptive control (1996), Prentice Hall: Prentice Hall Upper Saddle River, NJ · Zbl 0839.93002
[17] Jankovic, M.; Ghosh, B. K., Visually guided ranging from observations of points, lines and curves via an identifier based nonlinear observer, Systems and Control Letters, 25, 63-73 (1995) · Zbl 0877.93008
[18] Kano, H.; Ghosh, B. K.; Kanai, H., Single camera based motion and shape estimation using extended Kalman filtering, Mathematical and Computer Modelling, 34, 5, 511-525 (2001) · Zbl 0995.93067
[19] Karagiannis, D.; Astolfi, A., A new solution to the problem of range identification in perspective vision systems, IEEE Transactions on Automatic Control, 50, 12, 2074-2077 (2005) · Zbl 1365.68424
[20] Khalil, H. K., Nonlinear systems (2002), Prentice Hall: Prentice Hall New York, NY · Zbl 0626.34052
[23] Matthies, L.; Kanade, T.; Szeliski, R., Kalman filter-based algorithms for estimating depth from image sequences, International Journal of Computer Vision, 3, 3, 209-238 (1989)
[29] Ortega, R., Adaptive control of a class of nonlinearly parameterized plants, IEEE Transactions on Automatic Control, 43, 7, 930-934 (1998) · Zbl 0952.93071
[30] Sommerville, D. M.Y., An introduction to the Geometry of \(n\)-dimensions (1958), Dover: Dover New York, USA · Zbl 0086.35804
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.