×

The natural algorithmic approach of mixed trigonometric-polynomial problems. (English) Zbl 1373.42003

Summary: The aim of this paper is to present a new algorithm for proving mixed trigonometric-polynomial inequalities of the form \[ \sum_{i=1}^{n}\alpha _{i}x^{p_{i}} \cos ^{q_{i}} x\sin ^{r_{i}} x>0 \] by reducing them to polynomial inequalities. Finally, we show the great applicability of this algorithm and, as an example, we use it to analyze some new rational (Padé) approximations of the function \(\cos^{2}x\) and to improve a class of inequalities by Yang. The results of our analysis could be implemented by means of an automated proof assistant, so our work is a contribution to the library of automatic support tools for proving various analytic inequalities.

MSC:

42A05 Trigonometric polynomials, inequalities, extremal problems
42A10 Trigonometric approximation
41A58 Series expansions (e.g., Taylor, Lidstone series, but not Fourier series)
26D05 Inequalities for trigonometric functions and polynomials
12L05 Decidability and field theory

References:

[1] Zhang, L, Zhu, L: A new elementary proof of Wilker’s inequalities. Math. Inequal. Appl. 11, 149-151 (2008) · Zbl 1138.26307
[2] Klén, R, Visuri, M, Vuorinen, M: On Jordan type inequalities for hyperbolic functions. J. Inequal. Appl. 2010, Article ID 362548 (2010) · Zbl 1211.26015 · doi:10.1155/2010/362548
[3] Mortici, C: The natural approach of Wilker-Cusa-Huygens inequalities. Math. Inequal. Appl. 14(3), 535-541 (2011) · Zbl 1222.26020
[4] Chen, C-P: Sharp Wilker and Huygens type inequalities for inverse trigonometric and inverse hyperbolic functions. Integral Transforms Spec. Funct. 23(12), 865-873 (2012) · Zbl 1264.26018 · doi:10.1080/10652469.2011.644851
[5] Anderson, GD; Vuorinen, M.; Zhang, X.; Milovanović, G. (ed.); Rassias, M. (ed.), Analytic number theory, approximation theory and special functions, 297-345 (2014), Berlin · Zbl 1286.00055
[6] Yang, Z-H: New sharp Jordan type inequalities and their applications. Gulf J. Math. 2(1), 1-10 (2014) · Zbl 1389.26032
[7] Bercu, G: Padé approximant related to remarkable inequalities involving trigonometric functions. J. Inequal. Appl. 2016, 99 (2016) · Zbl 1333.41006 · doi:10.1186/s13660-016-1044-x
[8] Malešević, B, Makragić, M: A method for proving some inequalities on mixed trigonometric polynomial functions. J. Math. Inequal. 10(3), 849-876 (2016) · Zbl 1351.26030
[9] Banjac, B, Makragić, M, Malešević, B: Some notes on a method for proving inequalities by computer. Results Math. 69(1), 161-176 (2016) · Zbl 1332.41008 · doi:10.1007/s00025-015-0485-8
[10] Nenezić, M, Malešević, B, Mortici, C: Accurate approximations of some expressions involving trigonometric functions. Appl. Math. Comput. 283, 299-315 (2016) · Zbl 1410.26025 · doi:10.1016/j.amc.2016.02.035
[11] Malešević, B, Lutovac, T, Banjac, B: A proof of an open problem of Yusuke Nishizawa (2016). arXiv:1601.00083 · Zbl 1395.26001
[12] Malešević, B, Banjac, B, Jovović, I: A proof of two conjectures of Chao-Ping Chen for inverse trigonometric functions. J. Math. Inequal. 11(1), 151-162 (2017) · Zbl 1357.26024
[13] Bercu, G: The natural approach of trigonometric inequalities - Padé approximant. J. Math. Inequal. 11(1), 181-191 (2017) · Zbl 1357.41011 · doi:10.7153/jmi-11-18
[14] Dong, B, Yu, B, Yu, Y: A symmetric homotopy and hybrid polynomial system solving method for mixed trigonometric polynomial systems. Math. Comput. 83, 1847-1868 (2014) · Zbl 1327.13102 · doi:10.1090/S0025-5718-2013-02763-9
[15] Mitrinović, DS: Analytic Inequalities. Springer, Berlin (1970) · Zbl 0199.38101 · doi:10.1007/978-3-642-99970-3
[16] Milovanović, GV, Mitrinović, DS, Rassias, TM: Topics in Polynomials: Extremal Problems, Inequalities, Zeros. World Science, Singapore (1994) · Zbl 0848.26001 · doi:10.1142/1284
[17] de Abreu, GTF: Jensen-Cotes upper and lower bounds on the Gaussian Q-function and related functions. IEEE Trans. Commun. 57(11), 3328-3338 (2009) · doi:10.1109/TCOMM.2009.11.080479
[18] Rahmatollahi, G, de Abreu, GTF: Closed-form hop-count distributions in random networks with arbitrary routing. IEEE Trans. Commun. 60(2), 429-444 (2012) · doi:10.1109/TCOMM.2012.010512.110125
[19] Bundy, A: The Computer Modelling of Mathematical Reasoning. Academic Press, London, New York (1983) · Zbl 0541.68067
[20] Kaliszyk, C.; Wiedijk, F., Certified computer algebra on top of an interactive theorem prover, No. 4573, 94-105 (2007) · Zbl 1202.68382
[21] Wang, PS: The undecidability of the existence of zeros of real elementary functions. J. Assoc. Comput. Mach. 21, 586-589 (1974) · Zbl 0289.68017 · doi:10.1145/321850.321856
[22] Kennedy, J (ed.): Interpreting Gödel: Critical Essays; Chapter: B. Poonen, Undecidable Problems: A Sampler, pp. 211-241. Cambridge University Press, Cambridge (2014) http://www-math.mit.edu/ poonen/papers/sampler.pdf · Zbl 1297.03007
[23] Laczkovich, M: The removal of π from some undecidable problems involving elementary functions. Proc. Am. Math. Soc. 131, 2235-2240 (2003) · Zbl 1016.03008 · doi:10.1090/S0002-9939-02-06753-9
[24] Tarski, A: A Decision Method for Elementary Algebra and Geometry. University of California Press, Berkeley (1951) · Zbl 0044.25102
[25] Mureşan, AC: The polynomial roots repartition and minimum roots separation. WSEAS Trans. Math. 8(7), 515-527 (2008)
[26] Narkawicz, A, Muñoz, C, Dutle, A: Formally-verified decision procedures for univariate polynomial computation based on Sturm’s and Tarski’s theorems. J. Autom. Reason. 54(4), 285-326 (2015) · Zbl 1356.68196 · doi:10.1007/s10817-015-9320-x
[27] Cutland, N: Computability: An Introduction to Recursive Function Theory. Cambridge University Press, Cambridge (1980) · Zbl 0448.03029
[28] Cormen, TH, Leiserson, CE, Rivest, RL, Stein, C: Introduction to Algorithms, 3rd edn. MIT press, Cambridge, Massachusetts, London (2009) · Zbl 1187.68679
[29] Knuth, DE: The Art of Computer Programming, Volume 1: Fundamental Algorithms. Addison-Wesley, Reading (1968) · Zbl 0191.17903
[30] Gradshteyn, IS, Ryzhik, IM: Table of Integrals, Series and Products, 8th edn. Academic Press, San Diego (2014) · Zbl 0918.65002
[31] Geuvers, H: Proof assistants: history, ideas and future. Sādhanā 34(1), 3-25 (2009) · Zbl 1192.68629
[32] Miller, D., Communicating and trusting proofs: the case for foundational proof certificates, Nancy · Zbl 1366.03100
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.