×

Image matching using generalized scale-space interest points. (English) Zbl 1357.94023

Summary: The performance of matching and object recognition methods based on interest points depends on both the properties of the underlying interest points and the choice of associated image descriptors. This paper demonstrates advantages of using generalized scale-space interest point detectors in this context for selecting a sparse set of points for computing image descriptors for image-based matching. For detecting interest points at any given scale, we make use of the Laplacian \(\nabla ^2_{norm} L\), the determinant of the Hessian \(\det {\mathcal {H}}_{norm} L\) and four new unsigned or signed Hessian feature strength measures \({\mathcal {D}}_{1,norm} L\), \(\tilde{\mathcal {D}}_{1,norm} L\), \({\mathcal {D}}_{2,norm} L\) and \(\tilde{\mathcal {D}}_{2,norm} L\), which are defined by generalizing the definitions of the Harris and Shi-and-Tomasi operators from the second moment matrix to the Hessian matrix. Then, feature selection over different scales is performed either by scale selection from local extrema over scale of scale-normalized derivates or by linking features over scale into feature trajectories and computing a significance measure from an integrated measure of normalized feature strength over scale. A theoretical analysis is presented of the robustness of the differential entities underlying these interest points under image deformations, in terms of invariance properties under affine image deformations or approximations thereof. Disregarding the effect of the rotationally symmetric scale-space smoothing operation, the determinant of the Hessian \(\det {\mathcal {H}}_{norm} L\) is a truly affine covariant differential entity and the Hessian feature strength measures \({\mathcal {D}}_{1,norm} L\) and \(\tilde{\mathcal {D}}_{1,norm} L\) have a major contribution from the affine covariant determinant of the Hessian, implying that local extrema of these differential entities will be more robust under affine image deformations than local extrema of the Laplacian operator or the Hessian feature strength measures \({\mathcal {D}}_{2,norm} L\), \(\tilde{\mathcal {D}}_{2,norm} L\). It is shown how these generalized scale-space interest points allow for a higher ratio of correct matches and a lower ratio of false matches compared to previously known interest point detectors within the same class. The best results are obtained using interest points computed with scale linking and with the new Hessian feature strength measures \({\mathcal {D}}_{1,norm} L\), \(\tilde{\mathcal {D}}_{1,norm} L\) and the determinant of the Hessian \(\det {\mathcal {H}}_{norm} L\) being the differential entities that lead to the best matching performance under perspective image transformations with significant foreshortening, and better than the more commonly used Laplacian operator, its difference-of-Gaussians approximation or the Harris-Laplace operator. We propose that these generalized scale-space interest points, when accompanied by associated local scale-invariant image descriptors, should allow for better performance of interest point based methods for image-based matching, object recognition and related visual tasks.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
68U10 Computing methodologies for image processing

Software:

SURF; BRIEF; SIFT; PCA-SIFT

References:

[1] Aanaes, H., Lindbjerg-Dahl, A., Pedersen, K.S.: Interesting interest points: a comparative study of interest point performance on a unique data set. Int. J. Comput. Vis. 97(1), 18-35 (2012) · doi:10.1007/s11263-011-0473-8
[2] Agarwal, A., Triggs, B.: Multilevel image coding with hyperfeatures. Int. J. Comput. Vis. 78(1), 15-27 (2008) · doi:10.1007/s11263-007-0072-x
[3] Almansa, A., Lindeberg, T.: Fingerprint enhancement by shape adaptation of scale-space operators with automatic scale-selection. IEEE Trans. Image Process. 9(12), 2027-2042 (2000) · Zbl 0962.94018 · doi:10.1109/83.887971
[4] Balmashnova, E., Florack, L.M.J.: Novel similarity measures for differential invariant descriptors for generic object retrieval. J. Math. Imaging Vis. 31(2-3), 121-132 (2008) · Zbl 1446.68060 · doi:10.1007/s10851-008-0079-0
[5] Balmashnova, E.G., Platel, B., Florack, L., ter Haar Romeny, B.M.: Object matching in the presence of non-rigid deformations close to similarities. In: Proceedings of International Conference on Computer Vision (ICCV 2007), pp. 2591-2598. Rio de Janeiro, Brazil (2007)
[6] Baumberg, A.: Reliable feature matching across widely separated views. In: Proceedings of Computer Vision and Pattern Recognition (CVPR’00), pp. I:1774-1781. Hilton Head, SC (2000)
[7] Bay, H., Ess, A., Tuytelaars, T., van Gool, L.: Speeded up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346-359 (2008) · doi:10.1016/j.cviu.2007.09.014
[8] Bay, H., Tuytelaars, T., van Gool, L.: SURF: speeded up robust features. In: Proceedings European Conference on Computer Vision (ECCV 2006), Lecture Notes in Computer Science, vol. 3951, pp. I:404-417. Springer, Graz, Austria (2006)
[9] Beaudet, P.R.: Rotationally invariant image operators. In: Proceedings of 4th International Joint Conference on Pattern Recognition, pp. 579-583. Tokyo, Japan (1978)
[10] Belongie, S., Carson, C., Greenspan, H., Malik, J.: Color- and texture-based image segmentation using EM and its application to content-based image retrieval. In: Proceedings of International Conference on Computer Vision (ICCV’98), pp. 675-682. Bombay, India (1998)
[11] Benhimane, S., Malis, E.: Real-time image-based tracking of planes using efficient second-order minimization. In: Intelligent Robots and Systems (IROS 2004), pp. 943-948 (2004)
[12] Bigun, J.: Vision with Direction. Springer, Berlin (2006) · Zbl 1104.68782
[13] Bigün, J., Granlund, G.H.: Optimal orientation detection of linear symmetry. In: Proceedings of 1st International Conference on Computer Vision (ICCV’87), pp. 433-438. London (1987)
[14] Blom, J.: Topological and geometrical aspects of image structure. Ph.D. thesis, Dept. Med. Phys. Physics, Univ. Utrecht, NL-3508 Utrecht, Netherlands (1992)
[15] Blostein, D., Ahuja, N.: A multiscale region detector. Comput. Vis. Graph. Image Process. 45, 22-41 (1989) · doi:10.1016/0734-189X(89)90068-6
[16] Blostein, D., Ahuja, N.: Shape from texture: integrating texture element extraction and surface estimation. IEEE Trans. Pattern Anal. Mach. Intell. 11(12), 1233-1251 (1989) · doi:10.1109/34.41363
[17] Bosch, A., Zisserman, A., Munoz, X.: Scene classification via pLSA. In: Proceedings of European Conference on Computer Vision (ECCV 2006), Lecture Notes in Computer Science, vol. 3954, pp. 517-530. Springer (2006)
[18] Bosch, A., Zisserman, A., Munoz, X.: Image classification using random forests and ferns. In: Proceedings of International Conference on Computer Vision (ICCV 2007), pp. 1-8. Rio de Janeiro, Brazil (2007)
[19] Bretzner, L., Laptev, I., Lindeberg, T.: Hand-gesture recognition using multi-scale colour features, hierarchical features and particle filtering. In: Proceedings of Face and Gesture, pp. 63-74. Washington DC, USA (2002)
[20] Bretzner, L., Laptev, I., Lindeberg, T., Lenman, S., Sundblad, Y.: A prototype system for computer vision based human computer interaction. Report, ISRN KTH/NA/P-01/09-SE, Dept. of Numerical Analysis and Computing Science, KTH (2001)
[21] Bretzner, L., Lindeberg, T.: Feature tracking with automatic selection of spatial scales. Comput. Vis. Image Underst. 71(3), 385-392 (1998) · doi:10.1006/cviu.1998.0650
[22] Bretzner, L., Lindeberg, T.: Qualitative multi-scale feature hierarchies for object tracking. J. Vis. Commun. Image Represent. 11, 115-129 (2000) · doi:10.1006/jvci.1999.0438
[23] Brunnström, K., Lindeberg, T., Eklundh, J.O.: Active detection and classification of junctions by foveation with a head-eye system guided by the scale-space primal sketch. In: Sandini, G. (ed.) Proceedings of European Conference on Computer Vision (ECCV’92), Lecture Notes in Computer Science, vol. 588, pp. 701-709. Springer, Santa Margherita Ligure, Italy (1992)
[24] Burghouts, G.J., Geusebroek, J.M.: Performance evaluation of local colour invariants. Comput. Vis. Image Underst. 113(1), 48-62 (2009) · doi:10.1016/j.cviu.2008.07.003
[25] Cachia, A., Mangin, J.F., Riviere, D., Kherif, F., Boddaert, N., Andrade, A., Papadopoulos-Orfanos, D., Poline, J.B., Bloch, I., Zilbovicius, M., Sonigo, P., Brunelle, F., Regis, J.: A primal sketch of the cortex mean curvature: a morphogenesis based approach to study the variability of the folding patterns. IEEE Trans. Med. Imaging 22(6), 754-765 (2003) · Zbl 1041.68576 · doi:10.1109/TMI.2003.814781
[26] Calonder, M., Lepetit, V., Ozuysal, M., Trzcinski, T., Strecha, C., Fua, P.: BRIEF: computing a local binary descriptor very fast. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1281-1298 (2012)
[27] Carson, C., Belongie, S., Greenspan, H., Malik, J.: Blobworld: image segmentation using expectation-maximization and its application to image querying. IEEE Trans. Pattern Anal. Mach. Intell. 24(8), 1026-1038 (2002) · doi:10.1109/TPAMI.2002.1023800
[28] Chomat, O., de Verdiere, V., Hall, D., Crowley, J.: Local scale selection for Gaussian based description techniques. In: Proceedings European Conference on Computer Vision (ECCV 2000), Lecture Notes in Computer Science, vol. 1842, pp. I:117-133. Springer-Verlag, Dublin, Ireland (2000)
[29] Coulon, O., Mangin, J.F., Poline, J.B., Zilbovicius, M., Roumenov, D., Samson, Y., Frouin, V., Bloch, I.: Structural group analysis of functional activation maps. NeuroImage 11(6), 767-782 (2000) · doi:10.1006/nimg.2000.0580
[30] Crowley, J., Riff, O.: Fast computation of scale normalised receptive fields. In: Griffin, L., Lillholm, M. (eds.) Proceedings Scale-Space Methods in Computer Vision (Scale-Space’03), Lecture Notes in Computer Science, vol. 2695, pp. 584-598. Springer, Isle of Skye, Scotland (2003) · Zbl 1067.68728
[31] Crowley, J.L., Parker, A.C.: A representation for shape based on peaks and ridges in the difference of low-pass transform. IEEE Trans. Pattern Anal. Mach. Intell. 6(2), 156-170 (1984) · doi:10.1109/TPAMI.1984.4767500
[32] Crowley, J.L., Sanderson, A.C.: Multiple resolution representation and probabilistic matching of 2-D gray-scale shape. IEEE Trans. Pattern Anal. Mach. Intell. 9(1), 113-121 (1987) · doi:10.1109/TPAMI.1987.4767876
[33] Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: ECCV Workshop on Statistical Learning in Computer Vision. Prague, Czech Republik (2004)
[34] Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of Computer Vision and Pattern Recognition vol. 1, pp. 886-893 (2005)
[35] Damon, J.: Local Morse theory for solutions to the heat equation and Gaussian blurring. J. Differ. Equ. 115(2), 386-401 (1995) · Zbl 0847.35056 · doi:10.1006/jdeq.1995.1019
[36] Daniilidis, K.; Eklundh, JO; Siciliano, B. (ed.); Khatib, O. (ed.), 3-D vision and recognition, 543-562 (2008), Berlin · doi:10.1007/978-3-540-30301-5_24
[37] Demirci, M.F., Platel, B., Shokoufandeh, A., Florack, L., Dickinson, S.J.: The representation and matching of images using top points. J. Math. Imaging Vis. 35(2), 103-116 (2009) · doi:10.1007/s10851-009-0157-y
[38] Demirci, M.F., Shokoufandeh, A., Keselman, Y., Bretzner, L., Dickinson, S.: Object recognition as many-to-many feature matching. Int. J. Comput. Vis. 69(2), 203-222 (2006) · doi:10.1007/s11263-006-6993-y
[39] Deriche, R., Giraudon, G.: Accurate corner detection: an analytical study. In: Proceedings of International Conference on Computer Vision (ICCV’90), pp. 66-70. Osaka, Japan (1990) · Zbl 0586.92022
[40] Dreschler, L., Nagel, H.H.: Volumetric model and 3D-trajectory of a moving car derived from monocular TV-frame sequences of a street scene. Comput. Vis. Graph. Image Process. 20(3), 199-228 (1982) · doi:10.1016/0146-664X(82)90081-8
[41] Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: Proceedings of Computer Vision and Pattern Recognition (CVPR’03), pp. 264-271. Madison, Wisconsin (2003) · Zbl 0987.68597
[42] Fergus, R., Perona, P., Zisserman, A.: Weakly supervised scale-invariant learning of models for visual recognition. Int. J. Comput. Vis. 71(3), 273-303 (2007) · doi:10.1007/s11263-006-8707-x
[43] Florack, L.M.J.: Image Structure. Series in Mathematical Imaging and Vision. Springer, Berlin (1997) · doi:10.1007/978-94-015-8845-4
[44] Förstner, W.: Statistische Verfahren für die automatische Bildanalyse und ihre Bewertung bei der Objekterkennung und -vermessung. Habilitation thesis, Universität Stuttgart (1991)
[45] Förstner, W.A., Gülch, E.: A fast operator for detection and precise location of distinct points, corners and centers of circular features. In: Proceedings Intercommission Workshop of the International Society for Photogrammetry and Remote Sensing. Interlaken, Switzerland (1987)
[46] Frangi, A.F., NW, J., Hoogeveen, R.M., van Walsum, T., Viergever, M.A.: Model-based quantitation of 3D magnetic resonance angiographic images. IEEE Trans. Med. Imaging 18(10), 946-956 (2000) · doi:10.1109/42.811279
[47] Gårding, J., Lindeberg, T.: Direct computation of shape cues using scale-adapted spatial derivative operators. Int. J. Comput. Vis. 17(2), 163-191 (1996) · doi:10.1007/BF00058750
[48] Gauch, J.M., Pizer, S.M.: Multiresolution analysis of ridges and valleys in grey-scale images. IEEE Trans. Pattern Anal. Mach. Intell. 15(6), 635-646 (1993) · doi:10.1109/34.216734
[49] Geusebroek, J.M., van den Boomgaard, R., Smeulders, A.W.M., Geerts, H.: Color invariance. IEEE Trans. Pattern Anal. Mach. Intell. 23(12), 1338-1350 (2001) · doi:10.1109/34.977559
[50] Gevers, T., Smeulders, A.W.M.: Color-based object recognition. Pattern Recognit. Lett. 32, 453-464 (1999) · doi:10.1016/S0031-3203(98)00036-3
[51] Granlund, G.H., Knutsson, H.: Signal Processing in Computer Vision. Springer, Dordrecht (1995) · doi:10.1007/978-1-4757-2377-9
[52] Gu, S., Zheng, Y., Tomasi, C.: Critical nets and beta-stable features for image matching. In: Proceedings of European Conference on Computer Vision (ECCV 2010), Lecture Notes in Computer Science, vol. 6313, pp. 663-676. Springer (2010)
[53] ter Haar Romeny, B.: Front-End Vision and Multi-Scale Image Analysis. Springer, Berlin (2003) · doi:10.1007/978-1-4020-8840-7
[54] Hall, D., de Verdiere, V., Crowley, J.: Object recognition using coloured receptive fields. In: Proceedings of European Conference on Computer Vision (ECCV 2000), Lecture Notes in Computer Science, vol. 1842, pp. I:164-177. Springer, Dublin, Ireland (2000)
[55] Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, pp. 147-152 (1988)
[56] Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, vol. 1. Cambridge University Press, New York (2000) · Zbl 0956.68149
[57] Iijima, T.: Observation theory of two-dimensional visual patterns. Technical report,Papers of Technical Group on Automata and Automatic Control, IECE, Japan (1962)
[58] Jähne, B.: Spatio-Temporal Image Processing-Theory and Scientific Applications. No. 751 in Lecture Notes in Computer Science. Springer, Berlin (1993) · Zbl 0788.68161 · doi:10.1007/3-540-57418-2
[59] Jiang, Y.G., Ngo, C.W., Yang, J.: Towards optimal bag-of-features for object categorization and semantic video retrieval. In: Proceedings of 6th ACM International Conference on Image and Video Retrieval, pp. 494-501. Amsterdam, The Netherlands (2007)
[60] Johansen, P.: On the classification of toppoints in scale space. J. Math. Imaging Vis. 4, 57-67 (1994) · doi:10.1007/BF01250004
[61] Johansen, P., Skelboe, S., Grue, K., Andersen, J.D.: Representing signals by their top points in scale-space. In: Proceedings of 8th International Confernece on Pattern Recognition, pp. 215-217. Paris, France (1986)
[62] Jurie, F., Triggs, B.: Creating efficient codebooks for visual recognition. In: Proceedings International Conference on Computer Vision (ICCV 2005), vol. 1, pp. 17-21. Beijing, China (2005)
[63] Kadir, T., Brady, M.: Saliency, scale and image description. Int. J. Comput. Vis. 45(2), 83-105 (2001) · Zbl 0987.68597 · doi:10.1023/A:1012460413855
[64] Kadir, T., Zisserman, A., Brady, M.: An affine invariant salient region detector. In: Proc. European Conf. on Computer Vision (ECCV 2004), Lecture Notes in Computer Science, vol. 3021, pp. I:228-241. Springer, Prague, Czech Republik (2004) · Zbl 1098.68786
[65] Kaneva, B., Torralba, A., Freeman, W.T.: Evaluating image features using a photorealistic world. In: Proceedings of International Conference on Computer Vision (ICCV 2011), pp. 172-177. Barcelona, Spain (2011)
[66] Ke, Y., Sukthankar, R.: PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings Computer Vision and Pattern Recognition, pp. II: 506-513. Washington D. C. (2004)
[67] Kirbas, C., Quek, F.: A review of vessel extraction techniques and algorithms. ACM Comput. Surv. 36(2), 81-121 (2004) · doi:10.1145/1031120.1031121
[68] Kitchen, L., Rosenfeld, A.: Gray-level corner detection. Pattern Recognit. Lett. 1(2), 95-102 (1982) · doi:10.1016/0167-8655(82)90020-4
[69] Koenderink, J.J.: The structure of images. Biol. Cybern. 50, 363-370 (1984) · Zbl 0537.92011 · doi:10.1007/BF00336961
[70] Koenderink, J.J., Richards, W.: Two-dimensional curvature operators. J. Opt. Soc. Am. 5(7), 1136-1141 (1988) · doi:10.1364/JOSAA.5.001136
[71] Koenderink, J.J., van Doorn, A.J.: Dynamic shape. Biol. Cybern. 53, 383-396 (1986) · Zbl 0586.92022 · doi:10.1007/BF00318204
[72] Koenderink, J.J., van Doorn, A.J.: Representation of local geometry in the visual system. Biol. Cybern. 55, 367-375 (1987) · Zbl 0617.92024 · doi:10.1007/BF00318371
[73] Koenderink, J.J., van Doorn, A.J.: Generic neighborhood operators. IEEE Trans. Pattern Anal. Mach. Intell. 14(6), 597-605 (1992) · doi:10.1109/34.141551
[74] Kokkinos, I., Maragos, P., Yuille, A.: Bottom-up & top-down object detection using primal sketch features and graphical models. In: Proceedings of Computer Vision and Pattern Recognition (CVPR’06), pp. II: 1893-1900. New York (2006)
[75] Kokkinos, I., Yuille, A.: Scale invariance without scale selection. In: Proceedings ofComputer Vision and Pattern Recognition (CVPR’08), pp. 1-8 (2008)
[76] Krissian, K., Malandain, G., Ayache, N., Vaillant, R., Trousset, Y.: Model-based detection of tubular structures in 3D images. Comput. Vis. Image Underst. 80(2), 130-171 (2000) · Zbl 1010.68553 · doi:10.1006/cviu.2000.0866
[77] Kuijper, A., Florack, L.: Calculations on critical points under gaussian blurring. In: Proceedings of International Conference on Scale-Space Theories in Computer Vision (Scale-Space’99), Lecture Notes in Computer Science, vol. 1682, pp. 318-329. Springer, Corfu, Greece (1999)
[78] Kuijper, A., Florack, L.: Using catastrophe theory to derive trees from images. J. Math. Imaging Vis. 23(3), 219-238 (2005) · Zbl 1478.94056 · doi:10.1007/s10851-005-0481-9
[79] Laptev, I., Lindeberg, T.: Tracking of multi-state hand models using particle filtering and a hierarchy of multi-scale image features. In: Kerckhove, M. (ed.) Proceedings of International Conference on Scale-Space and Morphology in Computer Vision (Scale-Space’01), Lecture Notes in Computer Science, vol. 2106, pp. 63-74. Springer, Vancouver, Canada (2001) · Zbl 0991.68584
[80] Laptev, I., Lindeberg, T.: A distance measure and a feature likelihood map concept for scale-invariant model matching. Int. J. Comput. Vis. 52, 97-120 (2003) · Zbl 1477.68388 · doi:10.1023/A:1022947906601
[81] Larsen, A.B.L., Darkner, S., Dahl, A.L., Pedersen, K.S.: Jet-based local image descriptors. In: Proceedings of European Conference on Computer Vision (ECCV 2012), Lecture Notes in Computer Science, vol. 7574, pp. III:638-650. Springer (2012) · Zbl 0987.68597
[82] Lazebnik, S., Schmid, C., Ponce, J.: Semi-local affine parts for object recognition. In: Proceedings of British Machine Vision Conference on Kingston, UK (2004)
[83] Lazebnik, S., Schmid, C., Ponce, J.: A sparse texture representation using local affine regions. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1265-1278 (2005) · Zbl 1084.60019 · doi:10.1109/TPAMI.2005.151
[84] Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of Computer Vision and Pattern Recognition (CVPR’06), pp. 2169-2178. Washington, DC, USA (2006)
[85] Lew, M.S., Sebe, N., Djeraba, C., Jain, R.: Content-based multimedia information retrieval: state of the art and challenges. ACM Trans. Multimed. Comput. Commun. Appl. 2(1), 1-19 (2006) · doi:10.1145/1126004.1126005
[86] Lifshitz, L., Pizer, S.: A multiresolution hierarchical approach to image segmentation based on intensity extrema. IEEE Trans. Pattern Anal. Mach. Intell. 12(6), 529-541 (1990) · doi:10.1109/34.56189
[87] Linde, O., Lindeberg, T.: Object recognition using composed receptive field histograms of higher dimensionality. In: International Conference on Pattern Recognition, vol. 2, pp. 1-6. Cambridge (2004)
[88] Linde, O., Lindeberg, T.: Composed complex-cue histograms: an investigation of the information content in receptive field based image descriptors for object recognition. Comput. Vis. Image Underst. 116, 538-560 (2012) · doi:10.1016/j.cviu.2011.12.003
[89] Lindeberg, T.: Scale-space behaviour of local extrema and blobs. J. Math. Imaging Vis. 1(1), 65-99 (1992) · doi:10.1007/BF00135225
[90] Lindeberg, T.: Detecting salient blob-like image structures and their scales with a scale-space primal sketch: a method for focus-of-attention. Int. J. Comput. Vis. 11(3), 283-318 (1993) · doi:10.1007/BF01469346
[91] Lindeberg, T.: Discrete derivative approximations with scale-space properties: a basis for low-level feature extraction. J. Math. Imaging Vis. 3(4), 349-376 (1993) · doi:10.1007/BF01664794
[92] Lindeberg, T.: Effective scale: a natural unit for measuring scale-space lifetime. IEEE Trans. Pattern Anal. Mach. Intell. 15(10), 1068-1074 (1993) · doi:10.1109/34.254063
[93] Lindeberg, T.: On scale selection for differential operators. In: Proceedings of 8th Scandinavian Conference on Image Analysis (SCIA’93), pp. 857-866. Norwegian Society for Image Processing and Pattern Recognition, Tromsø Norway (1993)
[94] Lindeberg, T.: Scale-space theory: a basic tool for analysing structures at different scales. J. Appl. Stat. 21(2), 225-270 (1994). Also available from http://www.csc.kth.se/ tony/abstracts/Lin94-SI-abstract.html
[95] Lindeberg, T.: Scale-Space Theory in Computer Vision. Springer, Berlin (1994) · Zbl 0812.68040 · doi:10.1007/978-1-4757-6465-9
[96] Lindeberg, T.: Direct estimation of affine deformations of brightness patterns using visual front-end operators with automatic scale selection. In: Proceedings of International Conference on Computer Vision (ICCV’95), pp. 134-141. Cambridge, MA (1995)
[97] Lindeberg, T.: Edge detection and ridge detection with automatic scale selection. In: Proceedings of Computer Vision and Pattern Recognition, 1996, pp. 465-470. San Francisco, California (1996)
[98] Lindeberg, T.: Scale-space theory: a framework for handling image structures at multiple scales. In: Proceedings of CERN School of Computing, Technical Report CERN 96-08, pp. 27-38. Egmond aan Zee, The Netherlands (1996). Also available from http://www.csc.kth.se/cvap/abstracts/lin96-csc.html
[99] Lindeberg, T.: On automatic selection of temporal scales in time-casual scale-space. In: Sommer, G., Koenderink, J.J. (eds.) Proceedings of AFPAC’97: Algebraic Frames for the Perception-Action Cycle, Lecture Notes in Computer Science, vol. 1315, pp. 94-113. Springer, Kiel, Germany (1997)
[100] Lindeberg, T.: Edge detection and ridge detection with automatic scale selection. Int. J. Comput. Vis. 30(2), 117-154 (1998) · doi:10.1023/A:1008097225773
[101] Lindeberg, T.: Feature detection with automatic scale selection. Int. J. Comput. Vis. 30(2), 77-116 (1998)
[102] Lindeberg, T.: Principles for automatic scale selection. In: Handbook on Computer Vision and Applications, pp. 239-274. Academic Press, Boston (1999). Also available from http://www.csc.kth.se/cvap/abstracts/cvap222.html
[103] Lindeberg, T.; Wah, B. (ed.), Scale-space, 2495-2504 (2008), Hoboken
[104] Lindeberg, T.: Generalized scale-space interest points: scale-space primal sketch for differential descriptors (2010). Int. J. Comput. Vis.
[105] Lindeberg, T.: Generalized Gaussian scale-space axiomatics comprising linear scale-space, affine scale-space and spatio-temporal scale-space. J. Math. Imaging Vis. 40(1), 36-81 (2011) · Zbl 1255.68250 · doi:10.1007/s10851-010-0242-2
[106] Lindeberg, T.: A computational theory of visual receptive fields. Biol. Cybern. 107(6), 589-635 (2013) · Zbl 1294.92009 · doi:10.1007/s00422-013-0569-z
[107] Lindeberg, T.; Hawkes, P. (ed.), Generalized axiomatic scale-space theory, No. 178, 1-96 (2013), Amsterdam
[108] Lindeberg, T.: Image matching using generalized scale-space interest points. In: Proceedings of International Conference on Scale-Space and Variational Methods for Computer Vision (SSVM 2013), Lecture Notes in Computer Science, vol. 7893, pp. 355-367. Springer (2013) · Zbl 1362.68014
[109] Lindeberg, T.: Invariance of visual operations at the level of receptive fields. PLOS One 8(7), e66,990 (2013) · doi:10.1371/journal.pone.0066990
[110] Lindeberg, T.: Scale selection properties of generalized scale-space interest point detectors. J. Math. Imaging Vis. 46(2), 177-210 (2013) · Zbl 1312.68202 · doi:10.1007/s10851-012-0378-3
[111] Lindeberg, T.; Ikeuchi, K. (ed.), Scale selection, 701-713 (2014), New York · doi:10.1007/978-0-387-31439-6_242
[112] Lindeberg, T., Bretzner, L.: Real-time scale selection in hybrid multi-scale representations. In: Griffin, L., Lillholm, M. (eds.) Proceedings of Scale-Space Methods in Computer Vision (Scale-Space’03), Lecture Notes in Computer Science, vol. 2695, pp. 148-163. Springer, Isle of Skye, Scotland (2003) · Zbl 1067.68753
[113] Lindeberg, T., Florack, L.: Foveal scale-space and linear increase of receptive field size as a function of eccentricity. report, ISRN KTH/NA/P-94/27-SE, Department of Numerical Analysis and Computing Science, KTH (1994). Available from http://www.csc.kth.se/ tony/abstracts/CVAP166.html
[114] Lindeberg, T., Gårding, J.: Shape from texture from a multi-scale perspective. In: Nagel, T.S.H.H.-H., Shirai, Y. (eds.) Proceedings of International Conference on Computer Vision (ICCV’93), pp. 683-691. IEEE Computer Society Press, Berlin, Germany (1993)
[115] Lindeberg, T., Gårding, J.: Shape-adapted smoothing in estimation of 3-D depth cues from affine distortions of local 2-D structure. Image Vis. Comput. 15, 415-434 (1997) · doi:10.1016/S0262-8856(97)01144-X
[116] Lindeberg, T., Li, M.: Segmentation and classification of edges using minimum description length approximation and complementary junction cues. Comput. Vis. Image Underst. 67(1), 88-98 (1997) · doi:10.1006/cviu.1996.0510
[117] Lindeberg, T., Lidberg, P., Roland, P.: Analysis of brain activation patterns using a 3-D scale-space primal sketch. Hum. Brain Mapp. 7(3), 166-194 (1999) · doi:10.1002/(SICI)1097-0193(1999)7:3<166::AID-HBM3>3.0.CO;2-I
[118] Lowe, D.: Object recognition from local scale-invariant features. In: Proceedings of International Conference on Computer Vision (ICCV’99), pp. 1150-1157. Corfu, Greece (1999) · Zbl 1110.68151
[119] Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91-110 (2004) · doi:10.1023/B:VISI.0000029664.99615.94
[120] Mangin, J.F., Riviere, D., Coulon, O., Poupon, C., Cachia, A., Cointepas, Y., Poline, J.B., Le Bihan, D., Regis, J., Papadopoulos-Orfanos, D.: Coordinate-based versus structural approaches to brain image analysis. Artif. Intell. Med. 30, 177-197 (2004) · doi:10.1016/S0933-3657(03)00064-2
[121] Marr, D.: Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. W.H. Freeman, New York (1982)
[122] Marr, D., Hildreth, E.: Theory of edge detection. Proc. Royal Soc. Lond. 207, 187-217 (1980) · doi:10.1098/rspb.1980.0020
[123] Matas, J., Chum, O., Urba, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: Proceedings of British Machine Vision Conference, pp. 384-396 (2002)
[124] Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. Int. J. Comput. Vis. 60(1), 63-86 (2004) · doi:10.1023/B:VISI.0000027790.02288.f2
[125] Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615-1630 (2005) · doi:10.1109/TPAMI.2005.188
[126] Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., van Gool, L.: A comparison of affine region detectors. Int. J. Comput. Vis. 65(1-2), 43-72 (2005) · doi:10.1007/s11263-005-3848-x
[127] Moreels, P., Perona, P.: Evaluation of features detectors and descriptors based on 3D objects. In: Proceedings of International Conference on Computer Vision (ICCV’05), vol. I, pp. 800-807. Beijing, China (2005)
[128] Noble, J.A.: Finding corners. Image Vis. Comput. 6(2), 121-128 (1988) · doi:10.1016/0262-8856(88)90007-8
[129] Olsen, OF; Sporring, J. (ed.); Nielsen, M. (ed.); Florack, L. (ed.); Johansen, P. (ed.), Multi-scale watershed segmentation, 191-200 (1997), Copenhagen · doi:10.1007/978-94-015-8802-7_14
[130] Opelt, A., Pinz, A., Fussenegger, M., Auer, P.: Generic object recognition with boosting. IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 416-431 (2005) · Zbl 1098.68834 · doi:10.1109/TPAMI.2006.54
[131] Pietikäinen, M., Hadid, A., Zhao, G., Ahonen, T.: Computer Vision Using Local Binary Patterns. Springer, Berlin (2011) · doi:10.1007/978-0-85729-748-8
[132] Pinz, A.: Object categorization. Found. Trends Comput. Graph. Vis. 1(4), 259-362 (2006) · Zbl 1110.68151
[133] Pizer, S., Joshi, S., Fletcher, T., Styner, M., Tracton, G., Chen, J.: Segmentation of single-figure objects by deformable M-reps. In: Proceedings of 4th International Conference on Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science, vol. 2208, pp. 862-871. Springer (2001) · Zbl 1041.68707
[134] Pizer, S.M., Eberly, D., Fritsch, D.S.: Zoom-invariant vision of figural shape: the mathematics of cores. Comput. Vis. Image Underst. 69(1), 55-71 (1998) · doi:10.1006/cviu.1997.0563
[135] Platel, B., Balmashnova, E.G., Florack, L., ter Haar Romeny, B.M.: Top points as interest points for image matching. In: Proceedings of European Conference on Computer Vision (ECCV 2006), vol. 3951, pp. 418-429. Graz, Austria (2006) · Zbl 0537.92011
[136] Rosbacke, M., Roland, P.E., Lindeberg, T.: Evaluation of using absolute vs. relative base level when analyzing brain activation images using the scale-space primal sketch. J. Med. Image Anal. 5(2), 89-110 (2001) · doi:10.1016/S1361-8415(00)00037-2
[137] Rothganger, F., Lazebnik, S., Schmid, C., Ponce, J.: 3D object modeling and recognition using local affine-invariant image descriptors and multi-view spatial constraints. Int. J. Comput. Vis. 66(3), 231-259 (2006) · Zbl 1477.68418 · doi:10.1007/s11263-005-3674-1
[138] van de Sande, K.E.A., Gevers, T., Snoek, C.G.M.: Evaluating color descriptors for object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1582-1596 (2010) · doi:10.1109/TPAMI.2009.154
[139] Sato, Y., Nakajima, S., Shiraga, N., Atsumi, H., Yoshida, S., Koller, T., Gerig, G., Kikinis, R.: 3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Med. Image Anal. 2(2), 143-168 (1998) · doi:10.1016/S1361-8415(98)80009-1
[140] Schiele, B., Crowley, J.: Recognition without correspondence using multidimensional receptive field histograms. Int. J. Comput. Vis. 36(1), 31-50 (2000)
[141] Schneiderman, H., Kanade, T.: A statistical method for 3D object detection applied to faces and cars. In: Proceedings of Computer Vision and Pattern Recognition (CVPR’00), vol. I, pp. 746-751. Hilton Head, SC (2000)
[142] Shi, J., Tomasi, C.: Good features to track. In: Proceeedings of Computer Vision and Pattern Recognition, pp. 593-600 (1994)
[143] Shokoufandeh, A., Dickinson, S., Jansson, C., Bretzner, L., Lindeberg, T.: On the representation and matching of qualitative shape at multiple scales. In: Sparr, Heyden, Johansen, Nielsen (eds.) Proceedings European Conference on Computer Vision (ECCV 2002), pp. 759-775. Springer, Copenhagen, Denmark (2002) · Zbl 1039.68722
[144] Shokoufandeh, A., Marsic, I., Dickinson, S.: View-based object recognition using saliency maps. Image Vis. Comput. 17(5/6), 445-460 (1999) · doi:10.1016/S0262-8856(98)00124-3
[145] Sivic, J., Russell, B.C., Efros, A.A., Zisserman, A., Freeman, W.: Discovering objects and their location in images. In: Proceedings of Computer Vision and Pattern Recognition (CVPR’05), pp. I: 370-377. San Diego (2005)
[146] Slater, D., Healey, G.: Combining colour and geometric information for illumination invariant recognition of 3-D objects. In: Proceedings of International Conference on Computer Vision (ICCV’95), pp. 563-568. Cambridge, MA (1995)
[147] Sporring, J., Nielsen, M., Florack, L., Johansen, P. (eds.): Gaussian Scale-Space Theory: Proc. PhD School on Scale-Space Theory. Series in Mathematical Imaging and Vision. Springer, Copenhagen (1996)
[148] Swain, M., Ballard, D.: Color indexing. Int. J. Comput. Vis. 7(1), 11-32 (1991) · doi:10.1007/BF00130487
[149] Toews, M., Wells, W.M.: SIFT-Rank: ordinal descriptors for invariant feature correspondence. In: Proceedings of Computer Vision and Pattern Recognition (CVPR’09), pp. 172-177. Miami, Florida (2009)
[150] Tola, E., Lepetit, V., Fua, P.: Daisy: an efficient dense descriptor applied to wide baseline stereo. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 815-830 (2010) · doi:10.1109/TPAMI.2009.77
[151] Tuytelaars, T., van Gool, L.: Matching widely separated views based on affine invariant regions. Int. J. Comput. Vis. 59(1), 61-85 (2004)
[152] Tuytelaars, T., Mikolajczyk, K.: A survey on local invariant features. Found. Trends Comput. Graph. Vis. 3(3), 177-280 (2008)
[153] Voorhees, H., Poggio, T.: Detecting textons and texture boundaries in natural images. In: Proceedings of 1st International Conference on Computer Vision (ICCV’87). London, England (1987) · Zbl 1041.68576
[154] Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner-Verlag, Stuttgart (1998) · Zbl 0886.68131
[155] van de Weijer, J., Schmid, C.: Coloring local feature extraction. In: Procedings of European Conference on Computer Vision (ECCV 2006), Lecture Notes in Computer Science, pp. 334-348. Springer (2006)
[156] Wiltschi, K., Pinz, A., Lindeberg, T.: An automatic assessment scheme for steel quality inspection. Mach. Vis. Appl. 12, 113-128 (2000) · doi:10.1007/s001380050130
[157] Witkin, A.P.: Scale-space filtering. In: Proceedings of 8th International Joint Conference Artificial Intelligence, pp. 1019-1022. Karlsruhe, Germany (1983)
[158] Zhang, J., Barhomi, Y., Serre, T.: A new biologically inspired image descriptor. In: Procedings of European Conference on Computer Vision (ECCV 2012), Lecture Notes in Computer Science, vol. 7576, pp. III:312-324. Springer (2012).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.