×

Boundary value problems for Euler-Bernoulli planar elastica. A solution construction procedure. (English) Zbl 1436.53004

Summary: We consider the problem of finding a curve minimizing the Bernoulli bending energy among planar curves of the same length, joining two fixed points and possibly carrying orientations at the endpoints (Euler elastica). We focus on the problem of constructing closed form elasticae for given boundary data and show that, rather than employing complicated numerical algorithms, it suffices to use easily available computer algebra systems to implement our procedure. To this end, we first review some fundamental facts about the Euler-Bernoulli variational approach to the elastic rod. Our curves are only assumed to be stationary and not necessarily minimizers. Secondly, the Euler-Lagrange equations are expressed in terms of the curvature of the elasticae, what is used to compute their explicit parametrizations by means of the Jacobi elliptic functions. Lastly, we describe our approach to solving this problem under different boundary conditions, and the procedure is illustrated with numerous examples. We include the numerical code that we use in Appendix B.

MSC:

53A04 Curves in Euclidean and related spaces
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
49K15 Optimality conditions for problems involving ordinary differential equations
34B99 Boundary value problems for ordinary differential equations
Full Text: DOI

References:

[1] Ambrosio, L.; Masnou, S., A direct variational approach to a problem arising in image reconstruction, Interfaces Free Bound., 5, 63-81 (2003) · Zbl 1029.49037 · doi:10.4171/IFB/72
[2] Arreaga, G.; Capovilla, R.; Chryssomalakos, C.; Guven, J., Area-constrained planar elastica, Phys. Rev. E, 65, 3 (2002) · doi:10.1103/PhysRevE.65.031801
[3] Barros, M.; Ferrández, A.; Lucas, P., Conformal tension in string theories and M-theory, Nucl. Phys. B, 584, 719-748 (2000) · Zbl 0984.81118 · doi:10.1016/S0550-3213(00)00359-X
[4] Blankinship, W. A., The curtain rod problem, Am. Math. Mon., 50, 186-189 (1943) · Zbl 0063.00440 · doi:10.1080/00029890.1943.11991350
[5] Born, M.: Untersuchungen über die Stabilität der elastischen Linie in Ebene und Raum, under verschiedenen Grenzbedingungen. PhD thesis, University of Göttingen (1906) · JFM 38.0984.03
[6] Brunnett, G., A new characterization of plane elastica, Mathematical Methods in Computer Aided Geometric Design, II, 43-56 (1992), Boston: Academic Press, Boston
[7] Byrd, P. F.; Friedman, M. D., Handbook of Elliptic Integrals for Engineers and Scientists (1971), New York: Springer, New York · Zbl 0213.16602
[8] Chan, T.; Kang, S. H.; Shen, J., Euler’s elastica and curvature based inpaintings, SIAM J. Appl. Math., 63, 564-592 (2002) · Zbl 1028.68185
[9] Dayrens, F.; Masnou, S.; Novaga, M., Existence, regularity and structure of confined elasticae, ESAIM Control Optim. Calc. Var., 24, 25-43 (2018) · Zbl 1397.49020 · doi:10.1051/cocv/2016073
[10] Ding, Q.; Liu, X.; Wang, W., The vortex filament in the Minkowski 3-space and generalized bi-Schrödinger maps, J. Phys. A, 45 (2012) · Zbl 1339.58004 · doi:10.1088/1751-8113/45/45/455201
[11] Do Carmo, M. P., Differential Geometry of Curves and Surfaces (1976), Englewood Cliffs: Prentice-Hall, Inc. VIII, Englewood Cliffs · Zbl 0326.53001
[12] Euler, L., De curvis elasticis, Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti (1744)
[13] Garay, O. J., Extremals of the generalized Euler-Bernoulli energy and applications, J. Geom. Symmetry Phys., 12, 27-61 (2008) · Zbl 1157.74013
[14] Giaquinta, M.; Hildebrandt, S., Calculus of Variations (2004), Berlin: Springer, Berlin
[15] Gradshteyn, I. S.; Ryzhik, I. M., Table of Integrals, Series, and Products (2007), San Diego: Academic Press, San Diego · Zbl 1208.65001
[16] Guven, J.; Vázquez-Montejo, P.; Steigmann, D. J., The geometry of fluid membranes: variational principles, symmetries and conservation laws, The Role of Mechanics in the Study of Lipid Bilayers, 167-220 (2018), Cham: Springer, Cham
[17] Hasimoto, H., Motion of a vortex filament and its relation to elastica, J. Phys. Soc. Jpn., 31, 293-294 (1971) · doi:10.1143/JPSJ.31.293
[18] Hasimoto, H., A soliton on a vortex filament, J. Fluid Mech., 51, 477-485 (1972) · Zbl 0237.76010 · doi:10.1017/S0022112072002307
[19] Helfrich, W., Elastic properties of lipid bilayers: theory and possible experiments, Z. Naturforsch., 28c, 693-703 (1973) · doi:10.1515/znc-1973-11-1209
[20] Horn, B., The curve of least energy, ACM Trans. Math. Softw., 9, 4, 441-460 (1983) · Zbl 0533.41007 · doi:10.1145/356056.356061
[21] Jacobi, C.G.J.: Fundamentia Nova Theoriae Functionum Ellipticarum. Regiomonti. Sumtibus fratrum Borntraeger (1829)
[22] Kida, S., A vortex filament moving without change of form, J. Fluid Mech., 112, 397-409 (1981) · Zbl 0484.76030 · doi:10.1017/S0022112081000475
[23] Landau, L. D.; Lifschitz, E. M., Theory of Elasticity (1970), London: Pergamon Press Ltd., London
[24] Langer, J.; Singer, D. A., The total squared curvature of closed curves, J. Differ. Geom., 20, 1-22 (1984) · Zbl 0554.53013 · doi:10.4310/jdg/1214438990
[25] Langer, J.; Singer, D. A., Curve-straightening and a minimax argument for closed elastic curves, Topology, 24, 75-88 (1985) · Zbl 0561.53004 · doi:10.1016/0040-9383(85)90027-8
[26] Levien, R.: The elastica: a mathematical history. Technical Report No. UCB/EECS-2008-103, Univ. of Berkeley. http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-103.html
[27] Linnèr, A., Existence of free non-closed Euler-Bernoulli elastica, Nonlinear Anal., 21, 8, 575-593 (1993) · Zbl 0809.53006 · doi:10.1016/0362-546X(93)90002-A
[28] Linnèr, A., A unified representation of non-linear splines, J. Approx. Theory, 84, 315-350 (1996) · Zbl 0858.41004 · doi:10.1006/jath.1996.0022
[29] Linnèr, A.; Jerome, J., A unified graph of minimal elastic energy, Trans. Am. Math. Soc., 359, 2021-2041 (2007) · Zbl 1110.58009 · doi:10.1090/S0002-9947-06-04315-7
[30] Love, A. E., A Treatise on the Mathematical Theory of Elasticity (1944), New York: Dover Publications, New York · Zbl 0063.03651
[31] Mumford, D.; Bajaj, C., Elastica and computer vision, Algebraic Geometry and Its Applications, 491-506 (1994), New York: Springer, New York · Zbl 0798.53003
[32] Nitsche, J. C.C., Boundary value problems for variational integrals involving surface curvatures, Q. Appl. Math., 60, 363-387 (1993) · Zbl 0785.35027 · doi:10.1090/qam/1218374
[33] Oldfather, W. A.; Ellis, C. A.; Brown, D. M., Leonhard Euler’s elastic curves, Isis, 20, 1, 72-160 (1933) · JFM 59.0027.01 · doi:10.1086/346767
[34] Poleni, G.: Epistolarum Mathematicarum Fasciculus. Patavii (1729)
[35] Schrader, P., Morse theory for elastica, J. Geom. Mech., 8, 235-256 (2016) · Zbl 1352.58003 · doi:10.3934/jgm.2016006
[36] Singh, H.; Hanna, J. A., On the planar elastica, stress, and material stress, J. Elast., 136, 1, 87-101 (2019) · Zbl 1415.74035 · doi:10.1007/s10659-018-9690-5
[37] Truesdell, C., The rational mechanics of flexible or elastic bodies, 1338-1788. Introduction to Vol. X and XI, L. Euleri Opera Omnia (1960), Basel-Zurich: Birkhäuser, Basel-Zurich · Zbl 0215.31503
[38] Truesdell, C., The influence of elasticity on analysis: the classic heritage, Bull. Am. Meteorol. Soc., 9, 3, 293-310 (1983) · Zbl 0555.73030 · doi:10.1090/S0273-0979-1983-15187-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.