×

Minimum entangling power is close to its maximum. (English) Zbl 1509.81230

Summary: Given a quantum gate \(U\) acting on a bipartite quantum system, its maximum (average, minimum) entangling power is the maximum (average, minimum) entanglement generation with respect to certain entanglement measures when the inputs are restricted to be product states. In this paper, we mainly focus on the ‘weakest’ one, i.e. the minimum entangling power, among all these entangling powers. We show that, by choosing the entropy of entanglement or Schmidt rank as entanglement measure, even the ‘weakest’ entangling power is generically very close to the maximum possible value of the entanglement measure. In other words, maximum, average and minimum entangling powers are generically close. We then study minimum entangling power with respect to other Lipschitiz-continuous (for the Hilbert space distance) entanglement measures and generalize our results to multipartite quantum systems.

MSC:

81P65 Quantum gates
81P42 Entanglement measures, concurrencies, separability criteria
81P55 Special bases (entangled, mutual unbiased, etc.)

References:

[1] Aladpoosh T and Haghighi H 2011 On the dimension of higher secant varieties of segre varieties pn×⋯×pn J. Pure Appl. Algebra215 1040-52 · Zbl 1205.14063 · doi:10.1016/j.jpaa.2010.07.009
[2] Alon N 2010 A non-linear lower bound for planar epsilon-nets IEEE 51st Annual Symp. on Foundations of Computer Science (Piscataway, NJ: IEEE) pp 341-6 · doi:10.1109/FOCS.2010.39
[3] Balakrishnan S and Sankaranarayanan R 2010 Entangling power and local invariants of two-qubit gates Phys. Rev. A 82 034301 · Zbl 1255.81054 · doi:10.1103/PhysRevA.82.034301
[4] Batle J, Casas M, Plastino A and Plastino A 2005 Entanglement distribution and entangling power of quantum gates Opt. Spectrosc.99 371-8 · doi:10.1134/1.2055930
[5] Bennett C H and Wiesner S J 1992 Communication via one-and two-particle operators on einstein-podolsky-rosen states Phys. Rev. Lett.69 2881 · Zbl 0968.81506 · doi:10.1103/PhysRevLett.69.2881
[6] Berry D W 2007 Lower bounds for communication capacities of two-qudit unitary operations Phys. Rev. A 76 062302 · doi:10.1103/PhysRevA.76.062302
[7] Bini D, Lotti G and Romani F 1980 Approximate solutions for the bilinear form computational problem SIAM J. Comput.9 692-7 · Zbl 0446.68035 · doi:10.1137/0209053
[8] Brody D C and Hughston L P 2001 Geometric quantum mechanics J. Geom. Phys.38 19-53 · Zbl 1067.81081 · doi:10.1016/S0393-0440(00)00052-8
[9] Brönnimann H and Goodrich M T 1995 Almost optimal set covers in finite vc-dimension Discrete Comput. Geom.14 463-79 · Zbl 0841.68122 · doi:10.1007/BF02570718
[10] Buchberger B 2001 Gröbner bases: a short introduction for systems theorists Int. Conf. on Computer Aided Systems Theory (Berlin: Springer) pp 1-19 · Zbl 1023.68882 · doi:10.1007/3-540-45654-6_1
[11] Catalisano M V, Geramita A and Gimigliano A 2002 Ranks of tensors, secant varieties of segre varieties and fat points Linear Algebra Appl.355 263-85 · Zbl 1059.14061 · doi:10.1016/S0024-3795(02)00352-X
[12] Catalisano M V, Geramita A and Gimigliano A 2011 Secant varieties of p1⊗⋯⊗p1(n times) are not defective for n⩾5 J. Algebraic Geom.20 295-327 · Zbl 1217.14039 · doi:10.1090/S1056-3911-10-00537-0
[13] Chazelle B, Edelsbrunner H, Grigni M, Guibas L, Sharir M and Welzl E 1995 Improved bounds on weak ε-nets for convex sets Discrete Comput. Geom.13 1-15 · Zbl 0822.68110 · doi:10.1007/BF02574025
[14] Chen J, Cubitt T S, Harrow A W and Smith G 2011 Entanglement can completely defeat quantum noise Phys. Rev. Lett.107 250504 · doi:10.1103/PhysRevLett.107.250504
[15] Chen J, Duan R, Ji Z, Ying M and Yu J 2008 Existence of universal entangler J. Math. Phys.49 012103 · Zbl 1153.81338 · doi:10.1063/1.2829895
[16] Clarisse L, Ghosh S, Severini S and Sudbery A 2005 Entangling power of permutations Phys. Rev. A 72 012314 · doi:10.1103/PhysRevA.72.012314
[17] Hartshorne R 2013 Algebraic Geometry vol 52 (New York: Springer)
[18] Haussler D and Welzl E 1986 Epsilon-nets and simplex range queries Proc. of the Second Annual Symp. on Computational Geometry SCG ’86 (New York: ACM) pp 61-71 · doi:10515.10522
[19] Hayden P, Leung D, Shor P W and Winter A 2004 Randomizing quantum states: constructions and applications Commun. Math. Phys.250 371-91 · Zbl 1065.81025 · doi:10.1007/s00220-004-1087-6
[20] Hayden P, Leung D W and Winter A 2006 Aspects of generic entanglement Commun. Math. Phys.265 95-117 · Zbl 1107.81011 · doi:10.1007/s00220-006-1535-6
[21] Heydari H and Björk G 2005 Complex multi-projective variety and entanglement J. Phys. A: Math. Gen.38 3203 · Zbl 1065.81014 · doi:10.1088/0305-4470/38/14/010
[22] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Quantum entanglement Rev. Mod. Phys.81 865 · Zbl 1205.81012 · doi:10.1103/RevModPhys.81.865
[23] Jozsa R and Linden N 2003 On the role of entanglement in quantum-computational speed-up Proc. R. Soc. A 459 2011-32 · Zbl 1092.81518 · doi:10.1098/rspa.2002.1097
[24] Komlos J, Pach J and Tardos G 1992 Almost tight bounds for epsilon-nets Discrete Comput. Geom.7 163-73 · Zbl 0765.68209 · doi:10.1007/BF02187833
[25] Lee J M 2001 Introduction to Smooth Manifolds (New York: Springer)
[26] Linden N, Smolin J A and Winter A 2009 Entangling and disentangling power of unitary transformations are not equal Phys. Rev. Lett.103 030501 · Zbl 1254.81016 · doi:10.1103/PhysRevLett.103.030501
[27] Lu X M, Wang X, Yang Y and Chen J 2008 Matrix rearrangement approach for the entangling power with hybrid qudit systems Quantum Inf. Comput.8 0671-80 · Zbl 1154.81320
[28] Ma Z and Wang X 2007 Matrix realignment and partial-transpose approach to entangling power of quantum evolutions Phys. Rev. A 75 014304 · doi:10.1103/PhysRevA.75.014304
[29] Meckes E 2014 Lecture notes from course Concentration of Measure on the Compact Classical Matrix Groups (New Jersey: Women and Mathematics at the Institute for Advanced Study)
[30] Mezzadri F 2007 How to generate random matrices from the classical compact groups Notices of the American Mathematical Society54 592-604 · Zbl 1204.11142 · doi:10.1017/cbo9780511550492.005
[31] Miyake A 2003 Classification of multipartite entangled states by multidimensional determinants Phys. Rev. A 67 012108 · doi:10.1103/PhysRevA.67.012108
[32] Nielsen M A, Dawson C M, Dodd J L, Gilchrist A, Mortimer D, Osborne T J, Bremner M J, Harrow A W and Hines A 2003 Quantum dynamics as a physical resource Phys. Rev. A 67 052301 · doi:10.1103/PhysRevA.67.052301
[33] Plenio M B and Virmani S 2007 An introduction to entanglement measures Quantum Inf. Comput.7 1-51 · Zbl 1152.81798 · doi:10.1002/9783527618637.ch10
[34] Popescu S and Rohrlich D 1997 Thermodynamics and the measure of entanglement Phys. Rev. A 56 R3319 · doi:10.1103/PhysRevA.56.R3319
[35] Schmitt A H 2008 (Geometric Invariant Theory and Decorated Principal Bundles vol 11) (Zürich: European Mathematical Society) · Zbl 1159.14001
[36] Scott A J 2004 Multipartite entanglement, quantum-error-correcting codes, and entangling power of quantum evolutions Phys. Rev. A 69 052330 · doi:10.1103/PhysRevA.69.052330
[37] Tauvel P and Yu R W T 2006 Lie Algebras and Algebraic Groups (New York: Springer)
[38] Walgate J and Scott A J 2008 Generic local distinguishability and completely entangled subspaces J. Phys. A: Math. Theor.41 375305 · Zbl 1147.81011 · doi:10.1088/1751-8113/41/37/375305
[39] Walther P, Resch K and Zeilinger A 2005 Local conversion of greenberger-horne-zeilinger states to approximate w states Phys. Rev. Lett.94 240501 · doi:10.1103/PhysRevLett.94.240501
[40] Wang X, Sanders B C and Berry D W 2003 Entangling power and operator entanglement in qudit systems Phys. Rev. A 67 042323 · doi:10.1103/PhysRevA.67.042323
[41] Yang Y, Wang X and Sun Z 2008 Entangling power of a two-qudit geometric phase gate Phys. Lett. A 372 4369-72 · Zbl 1221.81046 · doi:10.1016/j.physleta.2008.04.023
[42] Zanardi P 2001 Entanglement of quantum evolutions Phys. Rev. A 63 040304 · Zbl 1255.81016 · doi:10.1103/PhysRevA.63.040304
[43] Zanardi P, Zalka C and Faoro L 2000 Entangling power of quantum evolutions Phys. Rev. A 62 030301 · doi:10.1103/PhysRevA.62.030301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.