×

Semiparametric modeling of SARS-CoV-2 transmission using tests, cases, deaths, and seroprevalence data. (English) Zbl 07923931

Summary: Mechanistic models fit to streaming surveillance data are critical for understanding the transmission dynamics of an outbreak as it unfolds in real-time. However, transmission model parameter estimation can be imprecise, sometimes even impossible, because surveillance data are noisy and not informative about all aspects of the mechanistic model. To partially overcome this obstacle, Bayesian models have been proposed to integrate multiple surveillance data streams. We devised a modeling framework for integrating SARS-CoV-2 diagnostics test and mortality time series data as well as seroprevalence data from cross-sectional studies and tested the importance of individual data streams for both inference and forecasting. Importantly, our model for incidence data accounts for changes in the total number of tests performed. We apply our Bayesian data integration method to COVID-19 surveillance data collected in Orange County, California, between March 2020 and February 2021 and find that 32–72% of the Orange County residents experienced SARS-CoV-2 infection by mid-January, 2021. Despite this high number of infections, our results suggest that the abrupt end of the winter surge in January 2021 was due to both behavioral changes and a high level of accumulated natural immunity.

MSC:

62Pxx Applications of statistics

References:

[1] ABBOTT, S., HELLEWELL, J., THOMPSON, R. N., SHERRATT, K., GIBBS, H. P., BOSSE, N. I., MUNDAY, J. D., MEAKIN, S., DOUGHTY, E. L. et al. (2020). Estimating the time-varying reproduction number of SARS-CoV-2 using national and subnational case counts. Wellcome Open Res. 5 112.
[2] ANDERSON, S. C., EDWARDS, A. M., YERLANOV, M., MULBERRY, N., STOCKDALE, J. E., IYANIWURA, S. A., FALCAO, R. C., OTTERSTATTER, M. C., IRVINE, M. A. et al. (2020). Quantifying the impact of COVID-19 control measures using a Bayesian model of physical distancing. PLoS Comput. Biol. 16 1-15.
[3] Andrieu, C., Doucet, A. and Holenstein, R. (2010). Particle Markov chain Monte Carlo methods. J. R. Stat. Soc. Ser. B. Stat. Methodol. 72 269-342. Digital Object Identifier: 10.1111/j.1467-9868.2009.00736.x Google Scholar: Lookup Link MathSciNet: MR2758115 · Zbl 1411.65020 · doi:10.1111/j.1467-9868.2009.00736.x
[4] BAYER, D., GOLDSTEIN, I. H., FINTZI, J., LUMBARD, K., RICOTTA, E., WARNER, S., STRICH, J. R., CHERTOW, D. S., BUSCH, L. M., PARKER, D. M., BODEN-ALBALA, B., CHHUON, R., ZAHN, M., QUICK, N., DRATCH, A. and MININ, V. M. (2024). Supplement to “Semiparametric modeling of SARS-CoV-2 transmission using tests, cases, deaths, and seroprevalence data.” https://doi.org/10.1214/24-AOAS1882SUPPA, https://doi.org/10.1214/24-AOAS1882SUPPB
[5] BHARGAVA, A., FUKUSHIMA, E. A., LEVINE, M., ZHAO, W., TANVEER, F., SZPUNAR, S. M. and SARAVOLATZ, L. (2020). Predictors for severe COVID-19 infection. Clin. Infect. Dis. 71 1962-1968.
[6] BOSSE, N. I., GRUSON, H., CORI, A., VAN LEEUWEN, E., FUNK, S. and ABBOTT, S. (2022). Evaluating forecasts with scoringutils in R. ArXiv preprint. Available at arXiv:2205.07090.
[7] BRETÓ, C., HE, D., IONIDES, E. L. and KING, A. A. (2009). Time series analysis via mechanistic models. Ann. Appl. Stat. 3 319-348. Digital Object Identifier: 10.1214/08-AOAS201 Google Scholar: Lookup Link MathSciNet: MR2668710 · Zbl 1160.62080 · doi:10.1214/08-AOAS201
[8] BRETÓ, C. and IONIDES, E. L. (2011). Compound Markov counting processes and their applications to modeling infinitesimally over-dispersed systems. Stochastic Process. Appl. 121 2571-2591. Digital Object Identifier: 10.1016/j.spa.2011.07.005 Google Scholar: Lookup Link MathSciNet: MR2832414 · Zbl 1279.60095 · doi:10.1016/j.spa.2011.07.005
[9] BRUCKNER, T. A., PARKER, D. M., BARTELL, S. M., VIEIRA, V. M., KHAN, S., NOYMER, A., DRUM, E., ALBALA, B., ZAHN, M. et al. (2021). Estimated seroprevalence of SARS-CoV-2 antibodies among adults in Orange County, California. Sci. Rep. 11 3081.
[10] UNITED STATES CENSUS BUREAU (2020). Quick Facts: Orange County, California. https://www.census.gov/quickfacts/orangecountycalifornia. Accessed: 2020-09-05.
[11] CASCANTE-VEGA, J., CORDOVEZ, J. M. and SANTOS-VEGA, M. (2022). Estimating and forecasting the burden and spread of Colombia’s SARS-CoV-2 first wave. Sci. Rep. 12 13568.
[12] CAUCHEMEZ, S. and FERGUSON, N. M. (2008). Likelihood-based estimation of continuous-time epidemic models from time-series data: Application to measles transmission in London. J. R. Soc. Interface 5 885-897.
[13] CORI, A., FERGUSON, N. M., FRASER, C. and CAUCHEMEZ, S. (2013). A new framework and software to estimate time-varying reproduction numbers during epidemics. Amer. J. Epidemiol. 178 1505-1512. Digital Object Identifier: 10.1093/aje/kwt133 Google Scholar: Lookup Link · doi:10.1093/aje/kwt133
[14] CUMMINGS, M. J., BALDWIN, M. R., ABRAMS, D., JACOBSON, S. D., MEYER, B. J., BALOUGH, E. M., AARON, J. G., CLAASSEN, J., RABBANI, L. E. et al. (2020). Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: A prospective cohort study. Lancet 395 1763-1770.
[15] DAVIES, N. G., ABBOTT, S., BARNARD, R. C., JARVIS, C. I., KUCHARSKI, A. J., MUNDAY, J. D., PEARSON, C. A. B., RUSSELL, T. W., TULLY, D. C. et al. (2021). Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 372.
[16] DAVIES, N. G., KUCHARSKI, A. J., EGGO, R. M., GIMMA, A., EDMUNDS, W. J., JOMBART, T., O’REILLY, K., ENDO, A., HELLEWELL, J. et al. (2020). Effects of non-pharmaceutical interventions on COVID-19 cases, deaths, and demand for hospital services in the UK: A modelling study. Lancet Public Health 5 e375-e385.
[17] DUKIC, V., LOPES, H. F. and POLSON, N. G. (2012). Tracking epidemics with Google Flu Trends data and a state-space SEIR model. J. Amer. Statist. Assoc. 107 1410-1426. Digital Object Identifier: 10.1080/01621459.2012.713876 Google Scholar: Lookup Link MathSciNet: MR3036404 · Zbl 1258.62102 · doi:10.1080/01621459.2012.713876
[18] FERGUSON, N. M. et al. (2020). Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. MRC Centre for Global Infectious Disease Analysis Reports. Accessed: 2020-06-19.
[19] FINTZI, J., WAKEFIELD, J. and MININ, V. N. (2022). A linear noise approximation for stochastic epidemic models fit to partially observed incidence counts. Biometrics 78 1530-1541. Digital Object Identifier: 10.1111/biom.13538 Google Scholar: Lookup Link MathSciNet: MR4534376 · Zbl 1520.62198 · doi:10.1111/biom.13538
[20] GE, H., XU, K. and GHAHRAMANI, Z. (2018). Turing: A language for flexible probabilistic inference. In Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics (A. Storkey and F. Perez-Cruz, eds.). Proceedings of Machine Learning Research 84 1682-1690. PMLR.
[21] GIBSON, G. C., REICH, N. G. and SHELDON, D. (2020). Real-time mechanistic Bayesian forecasts of COVID-19 mortality. MedRxiv.
[22] GLEESON, J. P., BRENDAN MURPHY, T., O’BRIEN, J. D., FRIEL, N., BARGARY, N. and O’SULLIVAN, D. J. (2022). Calibrating COVID-19 susceptible-exposed-infected-removed models with time-varying effective contact rates. Philos. Trans. R. Soc. Lond. A 380 20210120.
[23] GRINT, D. J., WING, K., HOULIHAN, C., GIBBS, H. P., EVANS, S. J., WILLIAMSON, E., MCDONALD, H. I., BHASKARAN, K., EVANS, D. et al. (2022). Severity of SARS-CoV-2 alpha variant (B.1.1.7) in England. Clin. Infect. Dis. 75 e1120-e1127.
[24] Hoffman, M. D. and Gelman, A. (2014). The no-U-turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15 1593-1623. zbMATH: 1319.60150 MathSciNet: MR3214779 · Zbl 1319.60150
[25] HÖHLE, M. and AN DER HEIDEN, M. (2014). Bayesian nowcasting during the STEC O104:H4 outbreak in Germany, 2011. Biometrics 70 993-1002. Digital Object Identifier: 10.1111/biom.12194 Google Scholar: Lookup Link MathSciNet: MR3295760 · Zbl 1393.62067 · doi:10.1111/biom.12194
[26] IRONS, N. J. and RAFTERY, A. E. (2021). Estimating SARS-CoV-2 infections from deaths, confirmed cases, tests, and random surveys. Proc. Natl. Acad. Sci. USA 118 e2103272118.
[27] JEWELL, S., FUTOMA, J., HANNAH, L., MILLER, A. C., FOTI, N. J. and FOX, E. B. (2021). It’s complicated: Characterizing the time-varying relationship between cell phone mobility and COVID-19 spread in the US. NPJ Digital Medicine 4 152.
[28] JORDAN, A., KRÜGER, F. and LERCH, S. (2019). Evaluating probabilistic forecasts with scoringRules. J. Stat. Softw. 90 1-37.
[29] KIM, L., GARG, S., O’HALLORAN, A., WHITAKER, M., PHAM, H., ANDERSON, E. J., ARMISTEAD, I., BENNETT, N. M., BILLING, L. et al. (2021). Risk factors for intensive care unit admission and in-hospital mortality among hospitalized adults identified through the US coronavirus disease 2019 (COVID-19)-associated hospitalization surveillance network (COVID-NET). Clin. Infect. Dis. 72 e206-e214.
[30] KNOCK, E. S., WHITTLES, L. K., LEES, J. A., PEREZ-GUZMAN, P. N., VERITY, R., FITZJOHN, R. G., GAYTHORPE, K. A. M., IMAI, N., HINSLEY, W. et al. (2021). Key epidemiological drivers and impact of interventions in the 2020 SARS-CoV-2 epidemic in England. Sci. Transl. Med. 13 eabg4262.
[31] LEKONE, P. E. and FINKENSTÄDT, B. F. (2006). Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study. Biometrics 62 1170-1177. Digital Object Identifier: 10.1111/j.1541-0420.2006.00609.x Google Scholar: Lookup Link MathSciNet: MR2307442 · Zbl 1114.62120 · doi:10.1111/j.1541-0420.2006.00609.x
[32] LI, J. and BRAUER, F. (2008). Continuous-time age-structured models in population dynamics and epidemiology. In Mathematical Epidemiology (F. Brauer, P. van den Driessche and J. Wu, eds.). Lecture Notes in Math. 1945 205-227. Springer, Berlin. Digital Object Identifier: 10.1007/978-3-540-78911-6_9 Google Scholar: Lookup Link MathSciNet: MR2428379 · Zbl 1206.92021 · doi:10.1007/978-3-540-78911-6_9
[33] Matheson, J. E. and Winkler, R. L. (1976). Scoring rules for continuous probability distributions. Manage. Sci. 22 1087-1096. · Zbl 0349.62080
[34] MOROZOVA, O., LI, Z. R. and CRAWFORD, F. W. (2021). One year of modeling and forecasting COVID-19 transmission to support policymakers in Connecticut. Sci. Rep. 13 20271.
[35] NGUYEN-VAN-YEN, B., DEL MORAL, P. and CAZELLES, B. (2021). Stochastic epidemic models inference and diagnosis with Poisson random measure data augmentation. Math. Biosci. 335 Paper No. 108583. Digital Object Identifier: 10.1016/j.mbs.2021.108583 Google Scholar: Lookup Link MathSciNet: MR4236034 · Zbl 1475.92183 · doi:10.1016/j.mbs.2021.108583
[36] O’DEA, E. B. and DRAKE, J. M. (2022). A semi-parametric, state-space compartmental model with time-dependent parameters for forecasting COVID-19 cases, hospitalizations and deaths. J. R. Soc. Interface 19 20210702.
[37] OMORI, R., MIZUMOTO, K. and CHOWELL, G. (2020). Changes in testing rates could mask the novel coronavirus disease (COVID-19) growth rate. Int. J. Infect. Dis. 94 116-118.
[38] PEI, S., YAMANA, T. K., KANDULA, S., GALANTI, M. and SHAMAN, J. (2021). Burden and characteristics of COVID-19 in the United States during 2020. Nature 1-18.
[39] PETRILLI, C. M., JONES, S. A., YANG, J., RAJAGOPALAN, H., O’DONNELL, L., CHERNYAK, Y., TOBIN, K. A., CERFOLIO, R. J., FRANCOIS, F. et al. (2020). Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: Prospective cohort study. BMJ 369.
[40] POOLEY, C. M., BISHOP, S. C. and MARION, G. (2015). Using model-based proposals for fast parameter inference on discrete state space, continuous-time Markov processes. J. R. Soc. Interface 12 20150225.
[41] PREM, K. et al. (2020). The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: A modelling study. Lancet Public Health 5 e261-e270.
[42] ROQUES, L., KLEIN, E. K., PAPAIX, J., SAR, A. and SOUBEYRAND, S. (2020). Using early data to estimate the actual infection fatality ratio from COVID-19 in France. Biology 9 97.
[43] SCOTT, J. A., GANDY, A., MISHRA, S., UNWIN, J., FLAXMAN, S. and BHATT, S. (2020). epidemia: Modeling of Epidemics using Hierarchical Bayesian Models. R package version 1.0.0.
[44] SHUBIN, M., LEBEDEV, A., LYYTIKÄINEN, O. and AURANEN, K. (2016). Revealing the true incidence of pandemic A(H1N1)pdm09 influenza in Finland during the first two seasons—an analysis based on a dynamic transmission model. PLoS Comput. Biol. 12 1-19.
[45] SONG, J.-W., ZHANG, C., FAN, X., MENG, F.-P., XU, Z., XIA, P., CAO, W.-J., YANG, T., DAI, X.-P. et al. (2020). Immunological and inflammatory profiles in mild and severe cases of COVID-19. Nat. Commun. 11 1-10.
[46] STOKES, A. C., LUNDBERG, D. J., ELO, I. T., HEMPSTEAD, K., BOR, J. and PRESTON, S. H. (2021). COVID-19 and excess mortality in the United States: A county-level analysis. PLoS Med. 18 1-18.
[47] STONER, O. and ECONOMOU, T. (2020). Multivariate hierarchical frameworks for modeling delayed reporting in count data. Biometrics 76 789-798. Digital Object Identifier: 10.1111/biom.13188 Google Scholar: Lookup Link MathSciNet: MR4151848 · Zbl 1468.62408 · doi:10.1111/biom.13188
[48] TEH, Y. W., ELESEDY, B., HE, B., HUTCHINSON, M., ZAIDI, S., BHOOPCHAND, A., PAQUET, U., TOMASEV, N., READ, J. et al. (2022). Efficient Bayesian inference of instantaneous reproduction numbers at fine spatial scales, with an application to mapping and nowcasting the Covid-19 epidemic in British local authorities. J. Roy. Statist. Soc. Ser. A 185 S65-S85. MathSciNet: MR4547502
[49] VAN DEN DRIESSCHE, P. (2008). Spatial structure: Patch models. In Mathematical Epidemiology (F. Brauer, P. van den Driessche and J. Wu, eds.). Lecture Notes in Math. 1945 179-189. Springer, Berlin. Digital Object Identifier: 10.1007/978-3-540-78911-6_7 Google Scholar: Lookup Link MathSciNet: MR2428377 · Zbl 1206.92037 · doi:10.1007/978-3-540-78911-6_7
[50] WHO (2021). Word Health Organization Q&A: Coronavirus disease (COVID-19): How is it transmitted? https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-covid-19-how-is-it-transmitted. Accessed: 2024-06-29.
[51] WIKLE, N. B., TRAN, T. N.-A., GENTILESCO, B., LEIGHOW, S. M., ALBERT, E., STRONG, E. R., BRINDA, K., INAM, H., YANG, F. et al. (2022). SARS-CoV-2 epidemic after social and economic reopening in three US states reveals shifts in age structure and clinical characteristics. Sci. Adv. 8 eabf9868.
[52] WU, Z. and MCGOOGAN, J. M. (2020). Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA 323 1239-1242.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.