×

On the classification of Heegaard splittings. (English) Zbl 1403.57013

It is a long-standing problem for Heegaard splittings of 3-manifolds to exhibit (produce) for each closed 3-manifold a complete list, without duplications, of all its irreducible Heegaard splittings, up to isotopy. In the present paper, an algorithmic solution of this problem is given for the case of non-Haken hyperbolic 3-manifolds \(N\): there is an effectively constructible finite set of Heegaard surfaces of \(N\) such that every Heegaard surface of an irreducible Heegaard splitting is isotopic to exactly one of the surfaces of the list.
In previous work T. Li [Geom. Topol. 15, No. 2, 1029–1106 (2011; Zbl 1221.57034)] showed how to construct, for each closed non-Haken 3-manifold \(N\), a finite list of genus-\(g\) Heegaard surfaces which contains every genus-\(g\) Heegaard surface, up to isotopy. Moreover, by work of the first two authors [T. H. Colding and D. Gabai, Duke Math. J. 167, No. 15, 2793–2832 (2018; Zbl 1403.57012)], there esists an effectively computable constant \(C(N)\) such that every irreducible Heegaard splitting of \(N\) has genus at most \(C(N)\), and an effectively constructible set of Heegaard surfaces that contains every irreducible Heegaard surface. However this list may contain reducible splittings and duplications, and “the main goal of the present paper is to give an effective algorithm that weeds out the duplications and reducible splittings”.
“It is interesting to note that our algorithm is elementary and combinatorial, yet the proof that it works requires a 2-parameter sweep-out argument and a multiparameter min-max argument”. The authors close with three “fundamental problems” for Heegaard splittings of general 3-manifolds: for the case of Haken 3-manifolds and Seifert fiber spaces, find an algorithm to decide whether a Heegaard splitting is reducible, and whether two irreducible Heegaard splittings are isotopic; finally, given a closed non-Haken 3-manifold, construct the tree of Heegaard splittings (which is finite by another result of T. Li [J. Am. Math. Soc. 19, No. 3, 625–657 (2006; Zbl 1108.57015)]).

MSC:

57M50 General geometric structures on low-dimensional manifolds

References:

[1] J. W. Alexander, “Some problems in topology” in Verhandlungen des Internationalen Mathematiker-Kongresses, Zurich 1932, Vol. 1, Kraus Reprint, Nendeln, 1967, 249–257. · JFM 58.0621.02
[2] D. Bachman, Stabilizing and destabilizing Heegaard splittings of sufficiently complicated \(3\)-manifolds, Math. Ann. 355 (2013), 697–728. · Zbl 1260.57036 · doi:10.1007/s00208-012-0802-4
[3] J. Birman, “On the equivalence of Heegaard splittings of closed, orientable \(3\)-manifolds” in Knots, Groups, and \(3\)-Manifolds, Ann. of Math. Studies 84, Princeton Univ. Press, Princeton, 1975, 137–164. · Zbl 0337.57002
[4] F. Bonahon and J. Otal, Scindements de Heegaard des espaces lenticulaires, Ann. Sci. École Norm. Sup. (4) 16 (1983), 451–466. · Zbl 0545.57002 · doi:10.24033/asens.1455
[5] W. Breslin, Curvature bounds for surfaces in hyperbolic \(3\)-manifolds, Canad. J. Math. 62 (2010), 994–1010. · Zbl 1207.57021
[6] A. Casson and C. Gordon, Reducing Heegaard splittings, Topol. Appl. 27 (1987), 275–283. · Zbl 0632.57010 · doi:10.1016/0166-8641(87)90092-7
[7] T. H. Colding and C. De Lellis, “The min-max construction of minimal surfaces” in Surveys in Differential Geometry, Vol. VIII, Boston, 2002, Surv. Differ. Geom. 8, Int. Press, Somerville, MA, 2013. · Zbl 1051.53052
[8] T. H. Colding and D. Gabai, Effective finiteness of irreducible Heegaard splittings of non-Haken \(3\)-manifolds, Duke Math J. 167 (2018), 2793–2832. · Zbl 1403.57012
[9] R. Engmann, Nicht-homöomorphe Heegaard-Zerlegungen vom Geschlecht \(2\) der zusammenhängenden Summe zweier Linsenräume, Abh. Math. Sem. Univ. Hamburg 35 (1970), 33–38. · Zbl 0202.54601
[10] J. Hass, A. Thompson, and W. Thurston, Stabilization of Heegaard splittings, Geom. Topol. 13 (2009), 2029–2050. · Zbl 1177.57018 · doi:10.2140/gt.2009.13.2029
[11] K. Johannson, Topology and Combinatorics of \(3\)-Manifolds, Lecture Notes in Math. 1599 (1995), Springer, Berlin. · Zbl 0820.57001
[12] J. Johnson, Bounding the stable genera of Heegaard splittings from below, J. Topol. 3 (2010), 668–690. · Zbl 1246.57044 · doi:10.1112/jtopol/jtq021
[13] J. Johnson, Calculating isotopy classes of Heegaard splittings, preprint, arXiv:1004.4669 [math.GT].
[14] D. Ketover, Genus bounds for min-max minimal surfaces, to appear in J. Differential Geom., preprint, arXiv:1312.2666 [math.DG].
[15] F. Laudenbach and S. Blank, Isotopie de formes fermées en dimension trois, Invent. Math. 54 (1979), 103–177. · Zbl 0435.58002 · doi:10.1007/BF01408934
[16] T. Li, Heegaard surfaces and measured laminations, II: Non-Haken \(3\)-manifolds, J. Amer. Math. Soc. 19 (2006), 625–657. · Zbl 1108.57015 · doi:10.1090/S0894-0347-06-00520-0
[17] T. Li, An algorithm to determine the Heegaard genus of a \(3\)-manifold, Geom. Topol. 15 (2011), 1029–1106. · Zbl 1221.57034
[18] Y. Moriah, Heegaard splittings of Seifert fibered spaces, Invent. Math. 91 (1988), 465–481. · Zbl 0651.57012 · doi:10.1007/BF01388781
[19] Y. Moriah and M. Lustig, Nielsen equivalence in Fuchsian groups and Seifert fibered spaces, Topology 30 (1991), 191–204. · Zbl 0726.55010 · doi:10.1016/0040-9383(91)90005-O
[20] Y. Moriah and J. Schultens, Irreducible Heegaard splittings of Seifert fibered spaces are either vertical or horizontal, Topology 37 (1998), 1089–1112. · Zbl 0926.57016 · doi:10.1016/S0040-9383(97)00072-4
[21] J. Pitts, Existence and Regularity of Minimal Surfaces on Riemannian Manifolds, Math. Notes 27, Princeton Univ. Press, Princeton, 1981. · Zbl 0462.58003
[22] J. Pitts and J. Rubinstein, “Applications of minimax to minimal surfaces and the topology of \(3\)-manifolds” in Microconference on Geometry and Partial Differential Equations, 2 (Canberra, 1986), Proc. Centre Math. Anal. Austral. Nat. Univ. 12, Austral. Nat. Univ., Canberra, 1987, 137–170. · Zbl 0639.49030
[23] K. Reidemeister, Zur dreidimensionalen Topologie, Abh. Math. Sem. Univ. Hamburg 9 (1933), 189–194. · JFM 59.1240.01
[24] H. Rubinstein and M. Scharlemann, Comparing Heegaard splittings of non-Haken \(3\)-manifolds, Topology 35 (1996), 1005–1026. · Zbl 0858.57020
[25] J Schultens, The stabilization problem for Heegaard splittings of Seifert fibered spaces, Topology Appl. 73 (1996) 133–139. · Zbl 0867.57013 · doi:10.1016/0166-8641(96)00030-2
[26] E. Sedgwick, The irreducibility of Heegaard splittings of Seifert fibered spaces, Pacific J. Math. 190 (1990), 173–199. · Zbl 1010.57006 · doi:10.2140/pjm.1999.190.173
[27] J. Singer, Three-dimensional manifolds and their Heegaard diagrams, Trans. Amer. Math. Soc. 35 (1933), 88–111. · Zbl 0006.18501 · doi:10.1090/S0002-9947-1933-1501673-5
[28] F. Smith. On the existence of embedded minimal \(2\)-spheres in the \(3\)-sphere, endowed with an arbitrary Riemannian metric, Ph.D. thesis, University of Melbourne, Melbourne, Australia, 1982.
[29] F. Waldhausen, Heegaard-Zerlegungen der \(3\)-Sphäre, Topology 7 (1968), 195–203. · Zbl 0157.54501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.