×

The application of compact residual distribution schemes to two-phase flow problems. (English) Zbl 1242.76335

Summary: The application of residual distribution schemes to two-phase flow problems is described. These schemes have been previously applied to system of conservation laws. However, its implementation in two-phase problems is not straightforward. Different numerical difficulties have been encountered: model hyperbolicity, non-conservative form of the equations, presence of source terms and degenerate cases have been analyzed. Within this context, two different models have been studied. Firstly, we present the Cortes model, where the inclusion of the interface pressure term makes the original system of equations hyperbolic, but there is no analytical expression of the eigenvalues, so linear perturbation methods are applied to obtain the approximate eigenstructure of the system. Secondly, we present the Staedtke model. This model has been designed to be hyperbolic, and analytical expressions of the eigenvectors can be computed. Different one and two dimensional tests have been computed to check the validity of the approach.

MSC:

76T10 Liquid-gas two-phase flows, bubbly flows
76M20 Finite difference methods applied to problems in fluid mechanics
Full Text: DOI

References:

[1] Ishii M. Thermo-fluid dynamic theory of two-phase flow, collection de la direction des Études et Recherches D’Électricité de France. Eyrolles; 1975.; Ishii M. Thermo-fluid dynamic theory of two-phase flow, collection de la direction des Études et Recherches D’Électricité de France. Eyrolles; 1975. · Zbl 0325.76135
[2] Drew, D. A., Mathematical modeling of two-phase flow, Ann Rev Fluid Mech, 15, 261-291 (1983) · Zbl 0569.76104
[3] Banerjee, S.; Chan, A. M.C., Separated flow models - I, Int J Multiphase Flow, 6, 1-24 (1980) · Zbl 0422.76064
[4] Ranson, V. H.; Hicks, D. L., Hyperbolic two-pressure models for two-phase flow, J Comput Phys, 53, 124-151 (1984) · Zbl 0537.76070
[5] Toumi, I.; Kumbaro, A., An approximate linearized Riemann solver for a two-fluid model, J Comput Phys, 124, 286-300 (1996) · Zbl 0847.76056
[6] Lahey, R. T., Boiling heat transfer; modern developments and advances (1992), Elsevier Science Publishers: Elsevier Science Publishers New York
[7] Ricchiuto M. Construction and analysis of compact residual discretizations for conservation laws on unstructered meshes, Ph.D Thesis. Universite Libre de Bruxelles and von Karman Institute for Fluid Dynamics. ISBN: 2-930389-16-8.; Ricchiuto M. Construction and analysis of compact residual discretizations for conservation laws on unstructered meshes, Ph.D Thesis. Universite Libre de Bruxelles and von Karman Institute for Fluid Dynamics. ISBN: 2-930389-16-8.
[8] Ndjinga, M.; Kumbaro, A.; Vuyst, F. D.; Laurent-Gengoux, P., Numerical simulation of hyperbolic two-phase flow models using a Roe-type solver, Nucl Eng Des, 238, 2075-2083 (2008)
[9] Ghidaglia, J.; Kumbaro, A.; Coq, G. L., On the numerical solution to two-fluid models via a cell centered finite volume method, Eur J Mech B Fluids, 20, 841-867 (2001) · Zbl 1059.76041
[10] Paillere, H.; Corre, C.; Cascales, J. G., On the extension of the AUSM scheme to compressible two-fluid models, Comp Fluids, 32, 891-916 (2003) · Zbl 1040.76044
[11] Cortes, J., On the construction of upwind schemes for non-equilibrium transient two-phase flow, Comp Fluids, 31, 159-182 (2002) · Zbl 1007.76046
[12] Staedtke, H.; Franchello, G.; Worth, B.; Graf, U.; Romstedt, P.; Kumbaro, A., Advanced three-dimensional two-phase flow simulation tools for applicaton to reactor safety (ASTAR), Nucl Eng Des, 235, 379-400 (2005)
[13] Paillere, H.; Boxho, J.; Degrez, G.; Deconinck, H., Multidimensional upwind residual distribution schemes for the convection-difussion equation, Int J Numer Fluid, 23, 923-936 (1996) · Zbl 0886.76045
[14] Deconinck, H.; Roe, P.; Struijs, R., A multidimensional generalization of Roe’s flux difference splitter for the Euler equations, Comp Fluids, 22, 215-222 (1993) · Zbl 0790.76054
[15] Csik, A.; Ricchiuto, M.; Deconinck, H., A conservative formulation of the multidimensional upwind residual distribution schemes for general nonlinear conservation laws, J Comput Phys, 179, 286-312 (2002) · Zbl 1005.65111
[16] Ricchiuto, M.; Csik, A.; Deconinck, H., Resicual distribution for general time-dependent conservation laws, J Comput Physics, 209, 249-289 (2005) · Zbl 1329.65228
[17] Caraeni, D.; Fuchs, L., Compact third-order multidimensional upwind discretization for steady and unsteady flow simulations, Comp Fluids, 34, 419-441 (2005) · Zbl 1138.76401
[18] Abgrall, R.; Andrianov, N.; Mezine, M., Towards very high order accurate schemes for unsteady convection problems on untructured meshes, Int J Numer Methods Fluids, 47, 8, 679-691 (2005) · Zbl 1134.76400
[19] Hubbard, M.; Laird, A., Achieving high-order fluctuation splitting schemes by extending the stencil, Comp Fluids, 34, 443-459 (2005) · Zbl 1138.65305
[20] Csik, A.; Deconinck, H., Space-time residual distribution schemes for hyperbolic conservations laws on unstructured linear finite elements, Int J Numer Methods Fluids, 40, 3, 573-581 (2002) · Zbl 1042.76041
[21] Cortes, J.; Debussche, A.; Toumi, I., A density perturbation method to study the eigenstructure of two-phase flow equation systems, J Comput Phys, 147, 463-484 (1998) · Zbl 0917.76047
[22] Pokharna, H.; Mori, M.; Ransom, V., Regularization of two-phase flow models: a comparison of numerical and differential approaches, J Comput Phys, 134, 282-295 (1997) · Zbl 0887.76081
[23] Citu-Bogoi A. A two-phase, two-component bubbly flow model, Ph.D Thesis. Universite catholique de louvain, faculte des science appliquees.; Citu-Bogoi A. A two-phase, two-component bubbly flow model, Ph.D Thesis. Universite catholique de louvain, faculte des science appliquees.
[24] Toumi AKI, Paillere H. Approximate Riemann solvers and flux vector splitting schemes for two-phase flow, \( 30^{\mathit{th}} \); Toumi AKI, Paillere H. Approximate Riemann solvers and flux vector splitting schemes for two-phase flow, \( 30^{\mathit{th}} \)
[25] Staedtke H , Franchello G , Worth B. Numerical simulation of gas-liquid flows using flux vector splitting techniques. In: \( 8^{\mathit{th}} \); Staedtke H , Franchello G , Worth B. Numerical simulation of gas-liquid flows using flux vector splitting techniques. In: \( 8^{\mathit{th}} \)
[26] Kato, T., Perturbation theory for linear operators (1984), Springer-Verlang · Zbl 0531.47014
[27] Staedtke H, Franchello G, Worth B. Towards a high resolution numerical simulation of transient two-phase flow. In: Third international conference on multi-phase flow (Lyon, Jun 8-12).; Staedtke H, Franchello G, Worth B. Towards a high resolution numerical simulation of transient two-phase flow. In: Third international conference on multi-phase flow (Lyon, Jun 8-12).
[28] Deconinck, H.; Ricchiuto, M., Residual distribution schemes: foundation and analysis. Residual distribution schemes: foundation and analysis, Vol. 3 of enciclopedia of computational mechanics (2007), John Wiley and Sons · Zbl 1216.76051
[29] Ferrante A, Deconinck H. Solution of the unsteady Euler equations using residual distribution and flux corrected transport, Technical Report VKI-PR 97-08.; Ferrante A, Deconinck H. Solution of the unsteady Euler equations using residual distribution and flux corrected transport, Technical Report VKI-PR 97-08.
[30] Caraeni DA. Development of a multidimensional upwinding residual distribution solver for large eddy simulation of industrial turbulent flows, Ph.D. Thesis. Lund Institute of Technology.; Caraeni DA. Development of a multidimensional upwinding residual distribution solver for large eddy simulation of industrial turbulent flows, Ph.D. Thesis. Lund Institute of Technology.
[31] Paillere H. Multidimensional upwind residual distribution schemes for the Euler and Navier-Stokes equations on unstructured grids, Ph.D Thesis. Belgium: Universite Libre de Bruxelles.; Paillere H. Multidimensional upwind residual distribution schemes for the Euler and Navier-Stokes equations on unstructured grids, Ph.D Thesis. Belgium: Universite Libre de Bruxelles. · Zbl 0885.76065
[32] Abgrall, R., Towards the ultimate conservative scheme: following the quest, J Comput Phys, 167, 277-315 (2001) · Zbl 0988.76055
[33] Toumi, I., A weak formulation of Roe’s approximate Riemann solver, J Comput Phys, 102, 360-373 (1992) · Zbl 0783.65068
[34] Romate, J., An approximate Riemann solver for a two-phase model with numerically given slip relation, Comp Fluids, 27, 455-477 (1998) · Zbl 0968.76052
[35] Schwendeman, D. W.; Wahle, C. W.; Kapila, A., The Riemann problem and high resolution Godunov method for a model of compressible two-phase flow, J Comput Phys, 212, 490-526 (2006) · Zbl 1161.76531
[36] Sainsaulieu, L., Finite volume approximation of two-phase fluid flows based on an approximate Roe-type Riemann solver, J Comput Phys, 121, 1-28 (1995) · Zbl 0834.76070
[37] Abgrall, R.; Barth, T., Residual distribution schemes for conservation laws via adaptive quadrature, Support de Cours: Schémas distribués en mécanique des fluides et applications (Inria-Rocquencourt), 183-212 (2000)
[38] Ricchiuto M, Rubino D, Witteveen J, Deconinck H. A residual distributive approach for one-dimensional two-fluid models and its relation to Godunov finite volume schemes. In: ASTAR international workshop on advanced numerical methods for multidimensional simulation of two-phase flow, September 15-16, 2003. p. 1-20.; Ricchiuto M, Rubino D, Witteveen J, Deconinck H. A residual distributive approach for one-dimensional two-fluid models and its relation to Godunov finite volume schemes. In: ASTAR international workshop on advanced numerical methods for multidimensional simulation of two-phase flow, September 15-16, 2003. p. 1-20.
[39] Huang, L., Pseudo-unsteady difference schemes for discontinuous solutions of steady-state one dimensional fluid dynamics problems, J Comput Phys, 42, 195-211 (1981) · Zbl 0482.76066
[40] Issman E, Degrez G. Implicit iterative methods for a multidimensional upwind Euler, Navier-Stokes solver on unstructured meshes, VKI LS 1995-02 (computation fluid dynamics).; Issman E, Degrez G. Implicit iterative methods for a multidimensional upwind Euler, Navier-Stokes solver on unstructured meshes, VKI LS 1995-02 (computation fluid dynamics).
[41] (Hewitt, G. F.; Delhaye, J. M.; Zuber, N., Numerical Benchmark tests, vol. 3 of multiphase science and technology (1987), Springer-Verlang), [chapter 3]
[42] Coquel, F.; Amine, K. E.; Godlewski, E.; Perthame, B.; Rascle, P., A numerical method using upwind schemes for the resolution of two-phase flows, J Comput Phys, 136, 272-288 (1997) · Zbl 0893.76052
[43] Bouker M. Modélisation numérique multidimensionnelle d’Écoulements diphasiques liquide-gaz en régimes transitoires et permanents: méthodes et applications, Thèse. ENS-Cachan, France.; Bouker M. Modélisation numérique multidimensionnelle d’Écoulements diphasiques liquide-gaz en régimes transitoires et permanents: méthodes et applications, Thèse. ENS-Cachan, France.
[44] Martin, J. C.; Moyce, W. J., An experimental study of the collapse of liquid columns on a rigid horizontal plane, Philos Trans R Soc Lond, 244, 312-324 (1952)
[45] Koshizuka, S.; Tamako, H.; Oka, Y., A particle method for incompressible viscous flow with fluid fragmentation, J Computat Fluid Dynamics, 4, 24-46 (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.