×

Multi-GPU multi-resolution SPH framework towards massive hydrodynamics simulations and its applications in high-speed water entry. (English) Zbl 07715258

Summary: We propose a multi-phase, multi-resolution SPH method for fluid/solid interaction with multi-GPU implementation and dynamic load balancing following the movement of the refinement regions. The primary design goal of this framework is to maintain the efficiency of the single-resolution SPH model running on a single GPU. To this end, a multi-background mesh is introduced, and the domain is regarded as a nested multi-domain with different resolutions. Validation using both a \(\delta\)-SPH and Riemann SPH model is shown, and applications to the simulation of the water entry of a projectile with a high Froude number are considered, with comparisons to experimental data from three challenging test cases, showing the proposed model’s ability to correctly reproduce the free surface evolution on water entry, the motion of the projectile, and the formation and evolution of multiple cavities depending on entry angle and velocity. An analysis of the computational performance and resolutions achieved (up to 120 million particles) is also provided across several test cases.

MSC:

76Mxx Basic methods in fluid mechanics
76-XX Fluid mechanics
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
Full Text: DOI

References:

[1] Lucy, L., A numerical approach to the testing of fission hypothesis, Astrophys. J., 82, 1013-1020 (1977)
[2] Gingold, R. A.; Monaghan, J. J., Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon. Not. R. Astron. Soc., 181, 3, 375-389 (1977) · Zbl 0421.76032
[3] Monaghan, J. J., Smoothed particle hydrodynamics, Rep. Prog. Phys., 68, 8, 1703 (2005) · Zbl 1160.76399
[4] Lind, S. J.; Rogers, B. D.; Stansby, P. K., Review of smoothed particle hydrodynamics: towards converged Lagrangian flow modelling, Proc. R. Soc. A, Math. Phys. Eng. Sci., 476, 2241, Article 20190801 pp. (2020) · Zbl 1472.76068
[5] Xu, X.; Jiang, Y.-L.; Yu, P., SPH simulations of 3D dam-break flow against various forms of the obstacle: toward an optimal design, Ocean Eng., 229, Article 108978 pp. (2021)
[6] He, F.; Zhang, H.; Huang, C.; Liu, M., A stable SPH model with large CFL numbers for multi-phase flows with large density ratios, J. Comput. Phys., 453, Article 110944 pp. (2022) · Zbl 07517716
[7] Zhang, C.; Rezavand, M.; Hu, X., A multi-resolution SPH method for fluid-structure interactions, J. Comput. Phys., 429, Article 110028 pp. (2021) · Zbl 07500760
[8] Monaghan, J. J., Smoothed particle hydrodynamics and its diverse applications, Annu. Rev. Fluid Mech., 44, 323-346 (2012) · Zbl 1361.76019
[9] Cui, W.; Kong, D.; Sun, T.; Yan, G., Coupling dynamic characteristics of high-speed water-entry projectile and ice sheet, Ocean Eng., 275, Article 114090 pp. (2023)
[10] Ji, Z.; Xu, F.; Takahashi, A.; Sun, Y., Large scale water entry simulation with smoothed particle hydrodynamics on single-and multi-GPU systems, Comput. Phys. Commun., 209, 1-12 (2016) · Zbl 1375.76147
[11] Harada, T.; Koshizuka, S.; Kawaguchi, Y., Smoothed particle hydrodynamics on GPUs, (Computer Graphics International (2007)), 63-70
[12] Hérault, A.; Bilotta, G.; Dalrymple, R. A., SPH on GPU with CUDA, J. Hydraul. Res., 48, Extra Issue, 74-79 (2010)
[13] Crespo, A. C.; Dominguez, J. M.; Barreiro, A.; Gómez-Gesteira, M.; Rogers, B. D., Gpus, a new tool of acceleration in cfd: efficiency and reliability on smoothed particle hydrodynamics methods, PLoS ONE, 6, 6, Article e20685 pp. (2011)
[14] Mokos, A.; Rogers, B. D.; Stansby, P. K.; Domínguez, J. M., Multi-phase SPH modelling of violent hydrodynamics on GPUs, Comput. Phys. Commun., 196, 304-316 (2015)
[15] Zhang, H.; Zhang, Z.; He, F.; Liu, M., Numerical investigation on the water entry of a 3D circular cylinder based on a GPU-accelerated SPH method, Eur. J. Mech. B, Fluids, 94, 1-16 (2022) · Zbl 1503.76073
[16] Hong, Y.; Wang, B.; Liu, H., Numerical study of hydrodynamic loads at early stage of vertical high-speed water entry of an axisymmetric blunt body, Phys. Fluids, 31, 10, Article 102105 pp. (2019)
[17] Dias, F.; Ghidaglia, J.-M., Slamming: recent progress in the evaluation of impact pressures, Annu. Rev. Fluid Mech., 50, 243-273 (2018) · Zbl 1384.76046
[18] Zhang, A.-M.; Li, S.-M.; Cui, P.; Li, S.; Liu, Y.-L., A unified theory for bubble dynamics, Phys. Fluids, 35, 3, Article 033323 pp. (2023)
[19] Hong, Y.; Zhao, Z.; Gong, Z.; Liu, H., Cavity dynamics in the oblique water entry of a cylinder at constant velocity, Phys. Fluids, 34, 2, Article 021703 pp. (2022)
[20] Eshraghi, J.; Jung, S.; Vlachos, P. P., To seal or not to seal: the closure dynamics of a splash curtain, Phys. Rev. Fluids, 5, 10, Article 104001 pp. (2020)
[21] Hong, Y.; Gong, Z.; Liu, H., The effect of atmospheric density on splash of spheres during water entry, Ocean Eng., 272, Article 113871 pp. (2023)
[22] Truscott, T. T.; Epps, B. P.; Belden, J., Water entry of projectiles, Annu. Rev. Fluid Mech., 46, 1, 355-378 (2014) · Zbl 1297.76024
[23] May, A., Water Entry and the Cavity-Running Behavior of Missiles (1975), NAVSEA Hydroballistics Advisory Committee: NAVSEA Hydroballistics Advisory Committee Silver Spring, MD
[24] Liu, W.-T.; Zhang, A.-M.; Miao, X.-H.; Ming, F.-R.; Liu, Y.-L., Investigation of hydrodynamics of water impact and tail slamming of high-speed water entry with a novel immersed boundary method, J. Fluid Mech., 958, A42 (2023) · Zbl 07662938
[25] Gong, K.; Shao, S.; Liu, H.; Lin, P.; Gui, Q., Cylindrical smoothed particle hydrodynamics simulations of water entry, J. Fluids Eng.-Trans. ASME, 141, 7, Article 071303 pp. (2019)
[26] Zhao, Z.-X.; Liu, H.; Gong, Z.-X., A high-efficiency smoothed particle hydrodynamics model with multi-cell linked list and adaptive particle refinement for two-phase flows, Phys. Fluids, 33, 6, Article 064102 pp. (2021)
[27] Yuan, Q.; Hong, Y.; Zhao, Z.; Gong, Z., Water-air two-phase flow during entry of a sphere into water using particle image velocimetry and smoothed particle hydrodynamics, Phys. Fluids, 34, 3, Article 032105 pp. (2022)
[28] Price, D. J., Smoothed particle hydrodynamics and magnetohydrodynamics, J. Comput. Phys., 231, 3, 759-794 (2012) · Zbl 1402.76100
[29] Børve, S.; Omang, M.; Trulsen, J., Regularized smoothed particle hydrodynamics with improved multi-resolution handling, J. Comput. Phys., 208, 1, 345-367 (2005) · Zbl 1114.76343
[30] Vacondio, R.; Rogers, B.; Stansby, P. K.; Mignosa, P.; Feldman, J., Variable resolution for SPH: a dynamic particle coalescing and splitting scheme, Comput. Methods Appl. Mech. Eng., 256, 132-148 (2013) · Zbl 1352.76100
[31] Barcarolo, D. A.; Le Touzé, D.; Oger, G.; De Vuyst, F., Adaptive particle refinement and derefinement applied to the smoothed particle hydrodynamics method, J. Comput. Phys., 273, 640-657 (2014) · Zbl 1351.76229
[32] Oger, G.; Doring, M.; Alessandrini, B.; Ferrant, P., Two-dimensional SPH simulations of wedge water entries, J. Comput. Phys., 213, 2, 803-822 (2006) · Zbl 1088.76056
[33] Chiron, L.; Oger, G.; De Leffe, M.; Le Touzé, D., Analysis and improvements of adaptive particle refinement (apr) through cpu time, accuracy and robustness considerations, J. Comput. Phys., 354, 552-575 (2018) · Zbl 1380.76117
[34] Harada, T.; Koshizuka, S.; Kawaguchi, Y., Sliced data structure for particle-based simulations on GPUs, (Proceedings of the 5th International Conference on Computer Graphics and Interactive Techniques in Australia and Southeast Asia (2007)), 55-62
[35] Valdez-Balderas, D.; Domínguez, J. M.; Rogers, B. D.; Crespo, A. J., Towards accelerating smoothed particle hydrodynamics simulations for free-surface flows on multi-gpu clusters, J. Parallel Distrib. Comput., 73, 11, 1483-1493 (2013)
[36] Domínguez, J. M.; Crespo, A. J.; Valdez-Balderas, D.; Rogers, B. D.; Gómez-Gesteira, M., New multi-GPU implementation for smoothed particle hydrodynamics on heterogeneous clusters, Comput. Phys. Commun., 184, 8, 1848-1860 (2013)
[37] Rustico, E.; Jankowski, J. A.; Hérault, A.; Bilotta, G.; Del Negro, C., Multi-GPU, multi-node SPH implementation with arbitrary domain decomposition, (9th SPHERIC Workshop (2014)), 127-133
[38] Ghaïtanellis, A.; Violeau, D.; Liu, P. L.-F.; Viard, T., SPH simulation of the 2007 Chehalis Lake landslide and subsequent tsunami, J. Hydraul. Res., 59, 6, 863-887 (2021)
[39] Wei, Z.; Edge, B. L.; Dalrymple, R. A.; Hérault, A., Modeling of wave energy converters by GPUSPH and project chrono, Ocean Eng., 183, 332-349 (2019)
[40] Rustico, E.; Bilotta, G.; Gallo, G.; Hérault, A.; Del Negro, C.; Dalrymple, R. A., A journey from single-GPU to optimized multi-GPU SPH with CUDA, (7th SPHERIC Workshop (2012)), 56
[41] Springel, V., The cosmological simulation code gadget-2, Mon. Not. R. Astron. Soc., 364, 4, 1105-1134 (2005)
[42] Ji, Z.; Fu, L.; Hu, X. Y.; Adams, N. A., A new multi-resolution parallel framework for SPH, Comput. Methods Appl. Mech. Eng., 346, 1156-1178 (2019) · Zbl 1440.76112
[43] Mokos, A.; Rogers, B. D.; Stansby, P. K., A multi-phase particle shifting algorithm for SPH simulations of violent hydrodynamics with a large number of particles, J. Hydraul. Res., 55, 2, 143-162 (2017)
[44] Liu, T.; Khoo, B.; Xie, W., Isentropic one-fluid modelling of unsteady cavitating flow, J. Comput. Phys., 201, 1, 80-108 (2004) · Zbl 1153.76435
[45] Antuono, M.; Colagrossi, A.; Marrone, S.; Molteni, D., Free-surface flows solved by means of SPH schemes with numerical diffusive terms, Comput. Phys. Commun., 181, 3, 532-549 (2010) · Zbl 1333.76055
[46] Zhang, C.; Hu, X.; Adams, N. A., A weakly compressible SPH method based on a low-dissipation Riemann solver, J. Comput. Phys., 335, 605-620 (2017) · Zbl 1375.76155
[47] Hammani, I.; Marrone, S.; Colagrossi, A.; Oger, G.; Le Touzé, D., Detailed study on the extension of the δ-SPH model to multi-phase flow, Comput. Methods Appl. Mech. Eng., 368, Article 113189 pp. (2020) · Zbl 1506.76125
[48] Grenier, N.; Antuono, M.; Colagrossi, A.; Le Touzé, D.; Alessandrini, B., An Hamiltonian interface SPH formulation for multi-fluid and free surface flows, J. Comput. Phys., 228, 22, 8380-8393 (2009) · Zbl 1333.76056
[49] Sun, P.; Colagrossi, A.; Marrone, S.; Antuono, M.; Zhang, A., Multi-resolution Delta-plus-SPH with tensile instability control: towards high Reynolds number flows, Comput. Phys. Commun., 224, 63-80 (2018) · Zbl 07694293
[50] Marrone, S.; Colagrossi, A.; Di Mascio, A.; Le Touzé, D., Prediction of energy losses in water impacts using incompressible and weakly compressible models, J. Fluids Struct., 54, 802-822 (2015)
[51] Adami, S.; Hu, X. Y.; Adams, N. A., A generalized wall boundary condition for smoothed particle hydrodynamics, J. Comput. Phys., 231, 21, 7057-7075 (2012)
[52] Zhao, Z.-X.; Hong, Y.; Gong, Z.-X.; Liu, H., Numerical analysis of cavity deformation of oblique water entry using a multi-resolution two-phase SPH method, Ocean Eng., 269, Article 113456 pp. (2023)
[53] Zhou, Z.; De Kat, J.; Buchner, B., A nonlinear 3d approach to simulate green water dynamics on deck, (Proceedings of the 7th International Conference on Numerical Ship Hydrodynamics. Proceedings of the 7th International Conference on Numerical Ship Hydrodynamics, Nantes, France (1999)), 1-15
[54] Zhao, R.; Faltinsen, O.; Aarsnes, J., Water entry of arbitrary two-dimensional sections with and without flow separation, (Proceedings of the 21st Symposium on Naval Hydrodynamics (1996)), 408-423
[55] Saikali, E.; Bilotta, G.; Hérault, A.; Zago, V., Accuracy improvements for single precision implementations of the SPH method, Int. J. Comput. Fluid Dyn., 34, 10, 774-787 (2020) · Zbl 1500.76065
[56] Crespo, A. J.; Domínguez, J. M.; Rogers, B. D.; Gómez-Gesteira, M.; Longshaw, S.; Canelas, R.; Vacondio, R.; Barreiro, A.; García-Feal, O., DualSPHysics: open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH), Comput. Phys. Commun., 187, 204-216 (2015) · Zbl 1348.76005
[57] Zhang, C.; Rezavand, M.; Zhu, Y.; Yu, Y.; Wu, D.; Zhang, W.; Zhang, S.; Wang, J.; Hu, X., SPHinXsys: an open-source meshless, multi-resolution and multi-physics library, Softw. Impacts, 6, Article 100033 pp. (2020)
[58] Viccione, G.; Bovolin, V.; Carratelli, E. P., Defining and optimizing algorithms for neighbouring particle identification in SPH fluid simulations, Int. J. Numer. Methods Fluids, 58, 6, 625-638 (2008) · Zbl 1283.76060
[59] Oger, G.; Le Touzé, D.; Guibert, D.; De Leffe, M.; Biddiscombe, J.; Soumagne, J.; Piccinali, J.-G., On distributed memory MPI-based parallelization of SPH codes in massive HPC context, Comput. Phys. Commun., 200, 1-14 (2016)
[60] Gou, W.; Zhang, S.; Zheng, Y., Implementation of the moving particle semi-implicit method for free-surface flows on gpu clusters, Comput. Phys. Commun., 244, 13-24 (2019) · Zbl 07674827
[61] Cui, X.; Habashi, W. G.; Casseau, V., Mpi parallelisation of 3d multiphase smoothed particle hydrodynamics, Int. J. Comput. Fluid Dyn., 34, 7-8, 610-621 (2020) · Zbl 1482.76090
[62] Truscott, T. T.; Epps, B. P.; Techet, A. H., Unsteady forces on spheres during free-surface water entry, J. Fluid Mech., 704, 173-210 (2012) · Zbl 1246.76008
[63] Song, Z.; Duan, W.; Xu, G.; Zhao, B., Experimental and numerical study of the water entry of projectiles at high oblique entry speed, Ocean Eng., 211, Article 107574 pp. (2020)
[64] Sui, Y.-T.; Zhang, A.-M.; Ming, F.-R.; Li, S., Experimental investigation of oblique water entry of high-speed truncated cone projectiles: cavity dynamics and impact load, J. Fluids Struct., 104, Article 103305 pp. (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.