×

Partition identities and quiver representations. (English) Zbl 1400.05026

Motivated by giving an elementary proof for a family of identities introduced by M. Reineke [J. Inst. Math. Jussieu 9, No. 3, 653–667 (2010; Zbl 1232.53072)], the paper under review presents a specific connection between classical partition combinatorics and the theory of quiver representations. In particular, they prove an analogue of A. L. Cauchy’s Durfee square identity to multipartitions. They use a generalization of the Durfee square to multiple Durfee rectangles. By establishing a weight-preserving bijection between two sets of multipartitions and using the generating series arguments, they obtain the so called quiver Durfee identity.
The authors also use their results to give a new explanation of M. Reineke’s identity in the case of type A quivers.

MSC:

05A17 Combinatorial aspects of partitions of integers
14L30 Group actions on varieties or schemes (quotients)
16G20 Representations of quivers and partially ordered sets
05E15 Combinatorial aspects of groups and algebras (MSC2010)

Citations:

Zbl 1232.53072

References:

[1] Abeasis, S., Del Fra, A.: Degenerations for the representations of an equioriented quiver of type Am. Un. Mat. Ital. Suppl. 2, 157-171 (1980) · Zbl 0449.16024
[2] Andrews, G .E.: The Theory of Partitions. Cambridge University Press, Cambridge (1984). doi:10.1017/CBO9780511608650. ISBN 9780511608650 · Zbl 0655.10001 · doi:10.1017/CBO9780511608650
[3] Bouwknegt, P.: Multipartitions, generalized Durfee squares and affine Lie algebra characters. J. Aust. Math. Soc. 72(3), 395-408 (2002) · Zbl 1019.05005
[4] Boulet, C.: Dysons new symmetry and generalized Rogers-Ramanujan identities. Ann. Comb. 14(2), 159-191 (2010) · Zbl 1233.05036 · doi:10.1007/s00026-010-0055-4
[5] Buch, A., Rimnyi, R.: A formula for non-equioriented quiver orbits of type A. J. Algebraic Geom. 16(3), 531-546 (2007). ISSN 1056-3911 · Zbl 1126.14052 · doi:10.1090/S1056-3911-07-00441-9
[6] Brion, M.: Representations of quivers. École thématique. Institut Fourier, pp. 48 (2008) · Zbl 1038.17008
[7] Davison, B., Meinhardt, S.: Cohomological Donaldson-Thomas theory of a quiver with potential and quantum enveloping algebras. arXiv:1601.02479 (2016) · Zbl 1462.14020
[8] Fock, V .V., Goncharov, A .B.: Cluster ensembles, quantization and the dilogarithm. Ann. Sci. Éc. Norm. Supér. (4) 42(6), 865-930 (2009) · Zbl 1180.53081 · doi:10.24033/asens.2112
[9] Faddeev, L.D., Kashaev, R.M.: Quantum dilogarithm. Mod. Phys. Lett. A 9(05), 427-434 (1994) · Zbl 0866.17010 · doi:10.1142/S0217732394000447
[10] Faddeev, L., Volkov, A.Y.: Abelian current algebra and the Virasoro algebra on the lattice. Phys. Lett. B 315(3-4), 311-318 (1993) · Zbl 0864.17042 · doi:10.1016/0370-2693(93)91618-W
[11] Gordon, B., Houten, L.: Notes on plane partitions. II. J. Comb. Theory 4(1), 81-99 (1968). ISSN 0021-9800 · Zbl 0153.32803 · doi:10.1016/S0021-9800(68)80089-4
[12] Keller, B.: On cluster theory and quantum dilogarithm identities. In: Representations of Algebras and Related Topics. EMS Ser. Congr. Rep., pp. 85-116. Eur. Math. Soc., Zürich (2011) · Zbl 1307.13028
[13] Knutson, A., Miller, E., Shimozono, M.: Four positive formulae for type A quiver polynomials. Invent. Math. 166(2), 229-325 (2006) · Zbl 1107.14046 · doi:10.1007/s00222-006-0505-0
[14] Kontsevich, M., Soibelman, Y.: Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants. Commun. Number Theory Phys. 5(2), 231-352 (2011) · Zbl 1248.14060 · doi:10.4310/CNTP.2011.v5.n2.a1
[15] Reineke, M.: Feigin’s map and monomial bases for quantized enveloping algebras. Math. Z. 237(3), 639-667 (2001) · Zbl 1038.17008 · doi:10.1007/PL00004885
[16] Reineke, M.: Poisson automorphisms and quiver moduli. J. Inst. Math. Jussieu 9(03), 653-667 (2010) · Zbl 1232.53072 · doi:10.1017/S1474748009000176
[17] Rimányi, R.: On the cohomological Hall algebra of Dynkin quivers. arXiv:1303.3399 (2013) · Zbl 0433.15009
[18] Ringel, C.M.: The rational invariants of the tame quivers. Invent. Math. 58(3), 217-239 (1980) · Zbl 0433.15009 · doi:10.1007/BF01390253
[19] Schutzenberger, M.-P.: Une interpretation de certaines solutions de l’equation fonctionnelle-f(x + y) = f(x)f(y). C. R. Hebd. Seances Acad. Sci. 236(4), 352-354 (1953) · Zbl 0051.09401
[20] Schilling, A., Warnaar, S.O.: Supernomial coefficients, polynomial identities and q-series. Ramanujan J. 2(4), 459-494 (1998) · Zbl 0921.05007 · doi:10.1023/A:1009780810189
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.