×

Numerical investigation of “frog-leap” mechanisms of three particles aligned moving in an inclined channel flow. (English) Zbl 1488.76104

Summary: Intrigued by our recent experimental work [the fifth author et al., “Solid-liquid two-phase flow measurement using an electromagnetically induced signal measurement method”, J. Fluids Eng. 133, No. 4, Article ID 041302, 6p. (2011; doi:10.1115/1.4003856)], the present study numerically investigate the flow-structure interactions (FSI) of three rigid circular particles aligned moving in an inclined channel flow at intermediate Reynolds numbers by using a momentum-exchanged immersed boundary-lattice Boltzmann method. A “frog-leap” phenomenon observed in the experiment is successfully captured by the present simulation and flow characteristics and underlying FSI mechanisms of it are explored by examining the effects of the channel inclined angles and Reynolds numbers. It is found that the asymmetric difference of the vorticity distributions on the particle surface is the main cause of the “frog-leap” when particle moves in the boundary layer near the lower channel boundary.

MSC:

76M28 Particle methods and lattice-gas methods
76T20 Suspensions
Full Text: DOI

References:

[1] S. L. SOO, Fluid Dynamics of Multiphase Flow, Blaisdell Publishing Company, Waltham (Massachusetts), Toronto, London, 1967. · Zbl 0173.52901
[2] L. M. HOCKING, The behaviour of clusters of spheres falling in a viscous fluid, part 2: slow motion theory, J. Fluid Mech., 20 (1963), pp. 129-139. · Zbl 0122.20402
[3] K. O. L. F. JAYAWEERA AND B. J. MASON, The behaviour of clusters of spheres falling in a viscous fluid, part 1: experiment, J. Fluid Mech., 20 (1963), pp. 121-128. · Zbl 0125.17204
[4] K. O. L. F. JAYAWEERA AND B. J. MASON, The behaviour of freely falling cylinders and cones in a viscous fluid, J. Fluid Mech., 22 (1965), pp. 709-720. · Zbl 0136.23303
[5] J. M. CROWLEY, Viscosity induced instability of a one-dimensional lattice of falling spheres, J. Fluid Mech., 45 (1971), pp. 151-159.
[6] M. L. EKIEL-JEŻEWSKA, B. METZGER, AND E. GUAZZELLI, Spherical cloud of point particles falling in a viscous fluid, Phys. Fluids, 18 (2006), 038104.
[7] D. L. KOCH, AND G. SUBRAMANIAN, Collective hydrodynamics of swimming microorganisms: living fluids, Annu. Rev. Fluid Mech., 43 (2011), pp. 637-659. · Zbl 1299.76320
[8] M. JENNY, J. DUSEK, AND G. BOUCHET, Instabilities and transition of a sphere falling or ascend-ing freely in a Newtonian fluid, J. Fluid Mech., 508 (2004), pp. 201-239. · Zbl 1065.76068
[9] A. M. ARDEKANI AND R. H. RANGEL, Unsteady motion of two solid spheres in Stokes flow, Phys. Fluids, 18 (2006), 103306.
[10] W. B. DANIEL, R. E. ECKE, G. SUBRAMANIAN AND D. KOCH, Clusters of sedimenting high-Reynolds-number particles, J. Fluid Mech., 625 (2009), pp. 371-385. · Zbl 1171.76306
[11] P. J. MUCHA, S. Y. TEE, D. A. WEITZ, B. I. SHRAIMAN, AND M. P. BRENNER, A model for velocity fluctuations in sedimentation, J. Fluid Mech., 501 (2004), pp. 71-104. · Zbl 1057.76062
[12] A.-K. TORNBERG AND M. J. SHELLEY, Simulating the dynamics and interactions of flexible fibers in Stokes flow, J. Comput. Phys., 196 (2004), pp. 8-40. · Zbl 1115.76413
[13] X. S. WANG, AND W. K. LIU, Extended immersed boundary method using FEM and RKPM, Comput. Meth. Appl. Mech. Eng., 193 (2004), pp. 1305-1321. · Zbl 1060.74676
[14] W. K. LIU, D. W. KIM AND S. TANG, Mathematical foundations of the immersed finite element method, Comput. Mech., 39 (2006), pp. 211-222. · Zbl 1178.74170
[15] D. G. E. GRIGORIADIS, S. C. KASSINOS, AND E. V. VOTYAKOV, Immersed boundary method for the MHD flows of liquid metals, J. Comput. Phys., 228 (2009), pp. 903-920. · Zbl 1168.76038
[16] T. J. PEDLEY AND J. Q. KESSLER, Hydrodynamic phenomena in suspensions of swimming mi-croorganisms, Annu. Rev. Fluid Mech., 24 (1992), pp. 313-358. · Zbl 0825.76985
[17] L. H. ISNEROS, R. CORTEZ, C. DOMBROWSKI, R. E. GOLDSTEIN, AND J. O. KESSLER, Flu-id dynamics of self-propelled microorganisms, from individuals to concentrated populations, Exp. Fluids, 43 (2007), pp. 737-753.
[18] N. C. DARNTON, L. TURNER, S. ROJEVSKY, AND H. C. BERG, Dynamics of bacterial swarming, Biophys. J., 98(10) (2010), pp. 2082-2090.
[19] T. GREGOR, K. FUJIMOTO, N. MASAKI AND S. SAWAI, The onset of collective behaviour in social amoebae, Science, 328(5981) (2010), pp. 1021-1025.
[20] J.-L. THIFFEAULT AND S. CHILDRESS, Stirring by swimming bodies, Phys. Lett. A, 374(34) (2010), pp. 3487-3490. · Zbl 1238.76080
[21] D. D. JOSEPH, Flow induced microstructure in Newtonian and viscoelastic fluids, Proc. 5th World Congress of Chem. Eng. Particle Technology Track, San Diego, July 14-18, 1996.
[22] J. FENG, P. Y. HUANG AND D. D. JOSEPH, Dynamic simulation of the motion of capsules in pipelines, J. Fluid Mech., 286 (1995), pp. 201-227. · Zbl 0843.76013
[23] D. D. JOSEPH, J. NELSON, H. HU AND Y. J. LIU, Competition between inertial pressures in the flow induced anisotropy of solid particles, in Theoretical and Applied Rheology, P. Moldenaers and R. Keunings (eds.), Elsevier, Amsterdam, 1992, 60-64.
[24] H. YAMAGUCHI AND X. D. NIU, A solid-liquid two-phase flow measurement using an electromag-netically induced signal measurement method, J. Fluids Eng., 133 (2011), pp. 041302.1-041302.6.
[25] X. D. NIU, C. SHU, Y. T. CHEW AND Y. PENG, A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows, Phys. Lett. A, 354 (2006), pp. 173-182. · Zbl 1181.76111
[26] H. GRAD, On the kinetic theory of rarefied gases, Commun. Pure Appl. Math., 2 (1949), pp. 331-407. · Zbl 0037.13104
[27] A. J. C. LADD AND R. VERBERG, Lattice-Boltzmann simulation of particle-fluid suspensions, J. Stat. Phys., 104 (2001), pp. 1191-1251. · Zbl 1046.76037
[28] C. S. PESKIN, The immersed boundary method, Acta Numer., 11 (2002), pp. 479-517. · Zbl 1123.74309
[29] H. DUTSCH, F. DURST, S. BECKER AND H. LIENHART, Low-Reynolds-number flow around an oscillating circular cylinder at low Keulegan-Carpenter numbers, J. Fluid Mech., 360 (1998), pp. 249-271. · Zbl 0922.76024
[30] S. Y. KANG, Immersed Boundary Methods in the Lattice Boltzmann Equation for Flow Simulation, Doctor Thesis, Texas A&M University, 2010.
[31] Z. G. FENG AND E. E. MICHAELIDES, Robust treatment of no-slip boundary condition and veloc-ity updating for the lattice-Boltzmann simulation of particulate flows, Comput. Fluids, 38 (2008), pp. 370-381. · Zbl 1237.76137
[32] Z. G. FENG AND E. E. MICHAELIDES, The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems, J. Comput. Phys., 195 (2004), pp. 602-628. · Zbl 1115.76395
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.