×

Permeability sets the linear path instability of buoyancy-driven disks. (English) Zbl 1528.76023

Summary: The prediction of trajectories of buoyancy-driven objects immersed in a viscous fluid is a key problem in fluid dynamics. Simple-shaped objects, such as disks, present a great variety of trajectories, ranging from zig-zag to tumbling and chaotic motions. Yet, similar studies are lacking when the object is permeable. We perform a linear stability analysis of the steady vertical path of a thin permeable disk, whose flow through the microstructure is modelled via a stress-jump model based on homogenization theory. The relative velocity of the flow associated with the vertical steady path presents a recirculation region detached from the body, which shrinks and eventually disappears as the disk becomes more permeable. In analogy with the solid disk, one non-oscillatory and several oscillatory modes are identified and found to destabilize the fluid-solid coupled system away from its straight trajectory. Permeability progressively filters out the wake dynamics in the instability of the steady vertical path. Modes dominated by wake oscillations are first stabilized, followed by those characterized by weaker, or absent, wake oscillations, in which the wake is typically a tilting induced by the disk inclined trajectory. For sufficiently large permeabilities, the disk first undergoes a non-oscillatory divergence instability, which is expected to lead to a steady oblique path with a constant disk inclination, in the nonlinear regime. A further permeability increase reduces the unstable range of all modes until quenching of all linear instabilities.

MSC:

76D25 Wakes and jets
35Q35 PDEs in connection with fluid mechanics

References:

[1] Andersen, A., Pesavento, U. & Wang, Z.J.2005Analysis of transitions between fluttering, tumbling and steady descent of falling cards. J. Fluid Mech.541, 91-104. · Zbl 1082.76038
[2] Assemat, P., Fabre, D. & Magnaudet, J.2012The onset of unsteadiness of two-dimensional bodies falling or rising freely in a viscous fluid: a linear study. J. Fluid. Mech.690, 173-202. · Zbl 1241.76238
[3] Auguste, F.2010 Instabilités de sillage générées derrière un corps solide cylindrique, fixe ou mobile dans un fluide visqueux. PhD thesis, thèse de doctorat dirigée par Fabre, David et Magnaudet, Jacques. Mécanique des fluides Toulouse 3 2010. http://www.theses.fr/2010TOU30046/document.
[4] Auguste, F., Magnaudet, J. & Fabre, D.2013Falling styles of disks. J. Fluid Mech.719, 388-405. · Zbl 1284.76130
[5] Belmonte, A., Eisenberg, H. & Moses, E.1998From flutter to tumble: inertial drag and froude similarity in falling paper. Phys. Rev. Lett.81 (2), 345.
[6] Camenen, B.2007Simple and general formula for the settling velocity of particles. ASCE J. Hydraul. Engng133 (2), 229-233.
[7] Castro, I.P.1971Wake characteristics of two-dimensional perforated plates normal to an air-stream. J. Fluid Mech.46 (3), 599-609.
[8] Citro, V., Tchoufag, J., Fabre, D., Giannetti, F. & Luchini, P.2016Linear stability and weakly nonlinear analysis of the flow past rotating spheres. J. Fluid Mech.807, 62-86. · Zbl 1383.76163
[9] Ciuti, M., Zampogna, G.A., Gallaire, F., Camarri, S. & Ledda, P.G.2021On the effect of a penetrating recirculation region on the bifurcations of the flow past a permeable sphere. Phys. Fluids33 (12), 124103.
[10] Cummins, C., Seale, M., Macente, A., Certini, D., Mastropaolo, E., Viola, I.M. & Nakayama, N.2018A separated vortex ring underlies the flight of the dandelion. Nature562 (7727), 414-418.
[11] Cummins, C., Viola, I.M., Mastropaolo, E. & Nakayama, N.2017The effect of permeability on the flow past permeable disks at low Reynolds numbers. Phys. Fluids29 (9), 097103.
[12] Dietrich, W.E.1982Settling velocity of natural particles. Water Resour. Res.18 (6), 1615-1626.
[13] Ern, P., Risso, F., Fabre, D. & Magnaudet, J.2012Wake-induced oscillatory paths of bodies freely rising or falling in fluids. Annu. Rev. Fluid Mech.44, 97-121. · Zbl 1355.76019
[14] Fabre, D., Auguste, F. & Magnaudet, J.2008Bifurcations and symmetry breaking in the wake of axisymmetric bodies. Phys. Fluids20 (5), 051702. · Zbl 1182.76238
[15] Fabre, D., Tchoufag, J. & Magnaudet, J.2012The steady oblique path of buoyancy-driven disks and spheres. J. Fluid Mech.707, 24-36. · Zbl 1275.76064
[16] Falcucci, G., Amati, G., Fanelli, P., Krastev, V.K., Polverino, G., Porfiri, M. & Succi, S.2021Extreme flow simulations reveal skeletal adaptations of deep-sea sponges. Nature595 (7868), 537-541.
[17] Fernandes, P.C., Ern, P., Risso, F. & Magnaudet, J.2008Dynamics of axisymmetric bodies rising along a zigzag path. J. Fluid Mech.606, 209-223. · Zbl 1166.76017
[18] Field, S.B., Klaus, M., Moore, M.G. & Nori, F.1997Chaotic dynamics of falling disks. Nature388 (6639), 252-254.
[19] Guazzelli, É., Morris, J.F. & Pic, S.2011A Physical Introduction to Suspension Dynamics. Cambridge University Press.
[20] Hornung, U.1997Homogenization and Porous Media. Springer. · Zbl 0872.35002
[21] Jenny, M., Dušek, J. & Bouchet, G.2004Instabilities and transition of a sphere falling or ascending freely in a Newtonian fluid. J. Fluid Mech.508, 201-239. · Zbl 1065.76068
[22] Lācis, U. & Bagheri, S.2017A framework for computing effective boundary conditions at the interface between free fluid and a porous medium. J. Fluid Mech.812, 866-889. · Zbl 1383.76447
[23] Ledda, P.G., Boujo, E., Camarri, S., Gallaire, F. & Zampogna, G.A.2021Homogenization-based design of microstructured membranes: wake flows past permeable shells. J. Fluid Mech.927, A31. · Zbl 1483.76057
[24] Ledda, P.G., Siconolfi, L., Viola, F., Camarri, S. & Gallaire, F.2019Flow dynamics of a dandelion pappus: a linear stability approach. Phys. Rev. Fluids4, 071901.
[25] Ledda, P.G., Siconolfi, L., Viola, F., Gallaire, F. & Camarri, S.2018Suppression of von Kármán vortex streets past porous rectangular cylinders. Phys. Rev. Fluids3, 103901.
[26] Magnaudet, J. & Eames, I.2000The motion of high-Reynolds-number bubbles in inhomogeneous flows. Annu. Rev. Fluid Mech.32 (1), 659-708. · Zbl 0989.76082
[27] Magnaudet, J., Rivero, M. & Fabre, J.1995Accelerated flows past a rigid sphere or a spherical bubble. Part 1. Steady straining flow. J. Fluid Mech.284, 97-135. · Zbl 0848.76063
[28] Matas, J.-P., Morris, J.F. & Guazzelli, E.2004Inertial migration of rigid spherical particles in Poiseuille flow. J. Fluid Mech.515, 171-195. · Zbl 1130.76301
[29] Meliga, P., Chomaz, J.-M. & Sipp, D.2009aGlobal mode interaction and pattern selection in the wake of a disk: a weakly nonlinear expansion. J. Fluid Mech.633, 159-189. · Zbl 1183.76721
[30] Meliga, P., Chomaz, J.-M. & Sipp, D.2009bUnsteadiness in the wake of disks and spheres: instability, receptivity and control using direct and adjoint global stability analyses. J. Fluids Struct.25 (4), 601-616.
[31] Mougin, G. & Magnaudet, J.2001Path instability of a rising bubble. Phys. Rev. Lett.88, 014502. · Zbl 1188.76203
[32] Nield, D.A. & Bejan, A.2013Convection in Porous Media, 4th edn. Springer. · Zbl 1268.76001
[33] Pesavento, U. & Wang, Z.J.2004Falling paper: Navier-Stokes solutions, model of fluid forces, and center of mass elevation. Phys. Rev. Lett.93 (14), 144501.
[34] Rafsanjani, A., Bertoldi, K. & Studart, A.R.2019Programming soft robots with flexible mechanical metamaterials. Sci. Robot.4 (29), eaav7874.
[35] Sierra-Ausín, J, Lorite-Díez, M., Jiménez-González, J.I., Citro, V. & Fabre, D.2022Unveiling the competitive role of global modes in the pattern formation of rotating sphere flows. J. Fluid Mech.942, A54. · Zbl 1494.76107
[36] Stringham, G.E., Simons, D.B. & Guy, H.P.1969The Behavior of Large Particles Falling in Quiescent Liquids. US Government Printing Office.
[37] Tchoufag, J., Fabre, D. & Magnaudet, J.2014Global linear stability analysis of the wake and path of buoyancy-driven disks and thin cylinders. J. Fluid Mech.740, 278-311.
[38] Willmarth, W.W., Hawk, N.E. & Harvey, R.L.1964Steady and unsteady motions and wakes of freely falling disks. Phys. Fluids7 (2), 197-208. · Zbl 0116.18903
[39] Zampogna, G.A. & Gallaire, F.2020Effective stress jump across membranes. J. Fluid Mech.892, A9. · Zbl 1460.76772
[40] Zampogna, G.A. & Bottaro, A.2016Fluid flow over and through a regular bundle of rigid fibres. J. Fluid Mech.792, 5-35. · Zbl 1381.76355
[41] Zampogna, G.A., Magnaudet, J. & Bottaro, A.2019Generalized slip condition over rough surfaces. J. Fluid Mech.858, 407-436. · Zbl 1415.76224
[42] Zong, L. & Nepf, H.2012Vortex development behind a finite porous obstruction in a channel. J. Fluid Mech.691, 368-391. · Zbl 1241.76058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.