×

Computational study of the interaction of freely moving particles at intermediate Reynolds numbers. (English) Zbl 1250.76171

Summary: Motivated by our interest in understanding collective behaviour and self-organization resulting from hydrodynamic interactions, we investigate the two-dimensional dynamics of horizontal arrays of settling cylinders at intermediate Reynolds numbers. To simulate these dynamics, we develop a direct numerical simulation based on the immersed interface method. A novel aspect of our method is its ability to efficiently and accurately couple the dynamics of the freely moving objects with the fluid. We report the falling configuration and the wake pattern of the array, and investigate their dependence on the number of particles, \(n\), as well as the initial inter-particle spacing; \(d_0\). We find that, in the case of odd-numbered arrays, the middle cylinder is always leading, whereas in the case of even-numbered arrays, the steady-state shape is concave-down. In large arrays \(n\geqslant 5\), the outer pairs tend to cluster. In addition, we analyse detailed kinematics, wakes and forces of three settling cylinders. We find that the middle one experiences a higher drag force in the presence of neighbouring cylinders, compared to an isolated settling cylinder, resulting in a decrease in its settling velocity. For a small initial spacing \(d_0\), the middle cylinder experiences a strong sideway repulsive force, the magnitude of which increases with decreasing \(d_0\). During the fall, the left and right cylinders rotate outwards and shed vortices in anti-phase.

MSC:

76T20 Suspensions
76Z10 Biopropulsion in water and in air
92C10 Biomechanics

References:

[1] DOI: 10.1007/s00348-007-0387-y · doi:10.1007/s00348-007-0387-y
[2] DOI: 10.1017/S0022112064001069 · Zbl 0125.17204 · doi:10.1017/S0022112064001069
[3] DOI: 10.1017/S0022112073000832 · doi:10.1017/S0022112073000832
[4] Happel, Mechanics of Fluids and Transport Processes (1973)
[5] DOI: 10.1016/S0378-4371(00)00013-3 · doi:10.1016/S0378-4371(00)00013-3
[6] DOI: 10.1017/S0022112071003045 · doi:10.1017/S0022112071003045
[7] Hill, J. Fluid Mech. 448 pp 213– (2001)
[8] DOI: 10.1016/S0065-3454(03)01001-5 · doi:10.1016/S0065-3454(03)01001-5
[9] DOI: 10.1016/j.cma.2007.06.012 · Zbl 1158.74540 · doi:10.1016/j.cma.2007.06.012
[10] DOI: 10.1103/PhysRevLett.95.204501 · doi:10.1103/PhysRevLett.95.204501
[11] DOI: 10.1017/S0022112064001070 · Zbl 0122.20402 · doi:10.1017/S0022112064001070
[12] DOI: 10.1063/1.2363351 · doi:10.1063/1.2363351
[13] DOI: 10.1146/annurev-fluid-122109-160736 · Zbl 1299.76285 · doi:10.1146/annurev-fluid-122109-160736
[14] Xu, SIAM 27 pp 1948– (2006)
[15] DOI: 10.1016/j.jcp.2008.08.014 · Zbl 1218.76039 · doi:10.1016/j.jcp.2008.08.014
[16] DOI: 10.1126/science.1183415 · doi:10.1126/science.1183415
[17] DOI: 10.1016/j.jcp.2005.12.016 · Zbl 1220.76058 · doi:10.1016/j.jcp.2005.12.016
[18] DOI: 10.1017/S0022112005005847 · Zbl 1082.76038 · doi:10.1017/S0022112005005847
[19] DOI: 10.1017/S0022112087001046 · doi:10.1017/S0022112087001046
[20] DOI: 10.1016/j.jcp.2008.01.053 · Zbl 1388.76280 · doi:10.1016/j.jcp.2008.01.053
[21] DOI: 10.1017/S002211200500594X · Zbl 1082.76037 · doi:10.1017/S002211200500594X
[22] DOI: 10.1063/1.2186692 · Zbl 1146.76374 · doi:10.1063/1.2186692
[23] DOI: 10.1088/0169-5983/41/1/011201 · Zbl 1281.76038 · doi:10.1088/0169-5983/41/1/011201
[24] DOI: 10.1016/j.bpj.2010.01.053 · doi:10.1016/j.bpj.2010.01.053
[25] DOI: 10.1103/PhysRevLett.99.148101 · doi:10.1103/PhysRevLett.99.148101
[26] DOI: 10.1017/S002211200900620X · Zbl 1171.76306 · doi:10.1017/S002211200900620X
[27] DOI: 10.1016/j.physleta.2010.06.043 · Zbl 1238.76080 · doi:10.1016/j.physleta.2010.06.043
[28] DOI: 10.1017/S0022112089002144 · doi:10.1017/S0022112089002144
[29] DOI: 10.1103/PhysRevLett.100.178103 · doi:10.1103/PhysRevLett.100.178103
[30] DOI: 10.1103/PhysRevLett.93.144501 · doi:10.1103/PhysRevLett.93.144501
[31] DOI: 10.1146/annurev.fl.24.010192.001525 · Zbl 0825.76985 · doi:10.1146/annurev.fl.24.010192.001525
[32] DOI: 10.1006/jtbi.1994.1218 · doi:10.1006/jtbi.1994.1218
[33] DOI: 10.1017/S0022112007005381 · Zbl 1113.76005 · doi:10.1017/S0022112007005381
[34] DOI: 10.1006/jfls.2000.0343 · doi:10.1006/jfls.2000.0343
[35] Li, Commun. Comput. Phys. 1 pp 874– (2006)
[36] DOI: 10.1137/0731054 · Zbl 0811.65083 · doi:10.1137/0731054
[37] DOI: 10.1098/rsta.1976.0065 · doi:10.1098/rsta.1976.0065
[38] DOI: 10.1017/S0022112003006463 · Zbl 1060.76026 · doi:10.1017/S0022112003006463
[39] DOI: 10.1146/annurev-fluid-121108-145434 · Zbl 1299.76320 · doi:10.1146/annurev-fluid-121108-145434
[40] DOI: 10.1063/1.1787527 · Zbl 1187.76272 · doi:10.1063/1.1787527
[41] DOI: 10.1017/S0022112093000229 · Zbl 0825.76136 · doi:10.1017/S0022112093000229
[42] DOI: 10.1038/nature08207 · doi:10.1038/nature08207
[43] DOI: 10.1063/1.1596412 · Zbl 1186.76270 · doi:10.1063/1.1596412
[44] DOI: 10.1016/j.cub.2007.04.050 · doi:10.1016/j.cub.2007.04.050
[45] DOI: 10.1017/S0022112004009164 · Zbl 1065.76068 · doi:10.1017/S0022112004009164
[46] DOI: 10.1017/S002211206500109X · Zbl 0136.23303 · doi:10.1017/S002211206500109X
[47] DOI: 10.1002/aic.690060125 · doi:10.1002/aic.690060125
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.