×

Simulating the interactions of two freely settling spherical particles in Newtonian fluid using lattice-Boltzmann method. (English) Zbl 1328.76071

Summary: The interactions of two freely settling spherical particles in a three dimensional channel are investigated employing the lattice-Boltzmann method with discrete external boundary force (LBM-EBF). By changing the initial separation distance and relative angle between the two particles, a comprehensive analysis about the impact of various parameters on the dynamics of the particle motion and particle-particle interactions is made. The terminal Reynolds numbers based on the diameter of particle and the terminal vertical velocity is about \(O(100)\). Three different regimes are identified in the two particles settling system: repulsion, attraction and transition regime. Each regime depends on the initial separation distance and the relative angle of the two particles. The general trend is that the smaller the initial angle, the more likely interaction between them is repulsion. On the contrary, the larger the initial angle, the more likely interaction is attraction. Further, the translation and the rotation of the particles as well as the long-body particle pair behavior and some flow patterns are systematically investigated.

MSC:

76T20 Suspensions
76M28 Particle methods and lattice-gas methods
70F05 Two-body problems
82C22 Interacting particle systems in time-dependent statistical mechanics
Full Text: DOI

References:

[1] van der Hoef, M. A.; van Sint Annaland, M.; Deen, N. G.; Kuipers, J. A.M., Numerical simulation of dense gas-solid fluidized beds: a multiscale modeling strategy, Annu. Rev. Fluid Mech., 40, 47-70 (2008) · Zbl 1231.76327
[2] Wylie, J. J.; Koch, D. L.; Ladd, A. J.C., Rheology of suspensions with high particle inertia and moderate fluid inertia, J. Fluid Mech., 480, 95-118 (2003) · Zbl 1063.76653
[3] Mordant, N.; Pinton, J. F., Velocity measurement of a settling sphere, Eur. Phys. J. B, 18, 343-352 (2000)
[4] ten Cate, A.; Nieuwstad, C. H.; Derksen, J. J.; Van den Akker, H. E.A., Particle imaging velocimetry experiments and lattice-Botlzmann simulations on a single sphere settling under gravity, Phys. Fluids, 14, 4012-4025 (2002) · Zbl 1185.76073
[5] Jenny, M.; Dusek, J.; Bouchet, G., Instabilities and transition of a sphere falling or ascending freely in a Newtonian fluid, J. Fluid Mech., 508, 201-239 (2004) · Zbl 1065.76068
[6] Zhaosheng, Y.; Phan-Thien, N.; Tanner, R. I., Dynamic simulation of sphere motion in a vertical tube, J. Fluid Mech., 518, 61-93 (2004) · Zbl 1131.76313
[7] Pitois, O.; Fritz, C.; Pasol, L.; Vignes-Adler, M., Sedimentation of a sphere in a fluid channel, Phys. Fluids, 21, 103304 (2009), (103305 pp) · Zbl 1183.76419
[8] Kim, I.; Elghobashi, S.; Sirignano, W. A., Three-dimensional flow over two spheres placed side by side, J. Fluid Mech., 246, 465-488 (1993) · Zbl 0825.76136
[9] Folkersma, R.; Stein, H. N.; Van De Vosse, F. N., Hydrodynamic interactions between two identical spheres held fixed side by side against a uniform stream directed perpendicular to the line connecting the spheres’ centres, Int. J. Multiphase Flow, 26, 877-887 (2000) · Zbl 1137.76579
[10] Xing, S.; Siak Piang, L., A LBM-DLM/FD method for 3D fluid-structure interactions, J. Comput. Phys., 226, 2028-2043 (2007) · Zbl 1121.76051
[11] Schouveiler, L.; Brydon, A.; Leweke, T.; Thompson, M. C., Interactions of the wakes of two spheres placed side by side, Eur. J. Mech. B/Fluids, 23, 137-145 (2004) · Zbl 1045.76509
[12] Jadoon, A.; Prahl, L.; Revstedt, J., Dynamic interaction of fixed dual spheres for several configurations and inflow conditions, Eur. J. Mech. B/Fluids, 29, 43-52 (2010) · Zbl 1183.76670
[13] Prahl, L.; Holzer, A.; Arlov, D.; Revstedt, J.; Sommerfeld, M.; Fuchs, L., On the interaction between two fixed spherical particles, Int. J. Multiphase Flow, 33, 707-725 (2007)
[14] Chen, R. C.; Wu, J. L., The flow characteristics between two interactive spheres, Chem. Eng. Sci., 55, 1143-1158 (2000)
[15] Fortes, A. F.; Joseph, D. D.; Lundgren, T. S., Nonlinear mechanics of fluidization of beds of spherical particles, J. Fluid Mech., 177, 467-483 (1987)
[16] Feng, J.; Hu, H. H.; Joseph, D. D., Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid part 1. Sedimentation, J. Fluid Mech., 261, 95-134 (1994) · Zbl 0800.76114
[17] Aidun, C. K.; Ding, E. J., Dynamics of particle sedimentation in a vertical channel: period-doubling bifurcation and chaotic state, Phys. Fluids, 15, 1612-1621 (2003) · Zbl 1186.76014
[18] Lomholt, S.; Stenum, B.; Maxey, M. R., Experimental verification of the force coupling method for particulate flows, Int. J. Multiphase Flow, 28, 225-246 (2002) · Zbl 1136.76564
[19] Feng, Z. G.; Michaelides, E. E., The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems, J. Comput. Phys., 195, 602-628 (2004) · Zbl 1115.76395
[20] Jafari, S.; Yamamoto, R.; Rahnama, M., Lattice-Boltzmann method combined with smoothed-profile method for particulate suspensions, Phys. Rev. E (Stat. Nonlinear Soft Matter Phys.), 83, 026702 (2011), (026707 pp)
[21] Johnson, A. A.; Tezduyar, T. E., Simulation of multiple spheres falling in a liquid-filled tube, Comput. Methods Appl. Mech. Eng., 134, 351-373 (1996) · Zbl 0895.76046
[22] Glowinski, R.; Pan, T. W.; Hesla, T. I.; Joseph, D. D.; Périaux, J., A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow, J. Comput. Phys., 169, 363-426 (2001) · Zbl 1047.76097
[23] Qi, D., Lattice-Boltzmann simulations of particles in non-zero-Reynolds-number flows, J. Fluid Mech., 385, 41-62 (1999) · Zbl 0938.76089
[24] Strack, O. E.; Cook, B. K., Three-dimensional immersed boundary conditions for moving solids in the lattice-Boltzmann method, Int. J. Numer. Methods Fluids, 55, 103-125 (2007) · Zbl 1205.76221
[25] Mukundakrishnan, K.; Hu, H. H.; Ayyaswamy, P. S., The dynamics of two spherical particles in a confined rotating flow: pedalling motion, J. Fluid Mech., 599, 169-204 (2008) · Zbl 1151.76621
[26] Apte, S. V.; Martin, M.; Patankar, N. A., A numerical method for fully resolved simulation (FRS) of rigid particle-flow interactions in complex flows, J. Comput. Phys., 228, 2712-2738 (2009) · Zbl 1282.76148
[27] Daniel, W. B.; Ecke, R. E.; Subramanian, G.; Koch, D. L., Clusters of sedimenting high-Reynolds-number particles, J. Fluid Mech., 625, 371-385 (2009) · Zbl 1171.76306
[28] Jayaweera, K. O.L. F.; Mason, B. J.; Slack, G. W., The behaviour of clusters of spheres falling in a viscous fluid Part 1. Experiment, J. Fluid Mech., 20, 121-128 (1964) · Zbl 0125.17204
[29] Joseph, D. D.; Liu, Y. J.; Poletto, M.; Feng, J., Aggregation and dispersion of spheres falling in viscoelastic liquids, J. Non Newtonian Fluid Mech., 54, 45-86 (1994)
[30] Wu, J.; Manasseh, R., Dynamics of dual-particles settling under gravity, Int. J. Multiphase Flow, 24, 1343-1358 (1998) · Zbl 1121.76482
[31] Nhan-Quyen, N.; Ladd, A. J., Sedimentation of hard-sphere suspensions at low Reynolds number, J. Fluid Mech., 525, 73-104 (2005) · Zbl 1065.76192
[32] Derksen, J., Direct numerical simulations of aggregation of monosized spherical particles in homogeneous isotropic turbulence, AIChE J., 58, 2589-2600 (2012)
[33] Ladd, A. J.C., Sedimentation of homogeneous suspensions of non-Brownian spheres, Phys. Fluids, 9, 491-499 (1997)
[34] Aidun, C. K.; Yannan, L.; Ding, E. J., Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation, J. Fluid Mech., 373, 287-311 (1998) · Zbl 0933.76092
[35] Aidun, C. K.; Clausen, J. R., Lattice-Boltzmann method for complex flows, Annu. Rev. Fluid Mech., 42, 439-472 (2010) · Zbl 1345.76087
[36] Sheng, B.; Sheng, C.; Zhaohui, L.; Jing, L.; Hanfeng, W.; Chuguang, Z., Simulation of the flow around an upstream transversely oscillating cylinder and a stationary cylinder in tandem, Phys. Fluids, 24, 023603 (2012), (023620 pp)
[37] Qian, Y. H.; D’Humieres, D.; Lallemand, P., Lattice BGK models for Navier-Stokes equation, Europhys. Lett., 17, 479-484 (1992) · Zbl 1116.76419
[38] Jingshu, W.; Aidun, C. K., Simulating 3D deformable particle suspensions using lattice Boltzmann method with discrete external boundary force, Int. J. Numer. Methods Fluids, 62, 765-783 (2010) · Zbl 1423.76473
[39] Jingshu, W.; Aidun, C. K., A method for direct simulation of flexible fiber suspensions using lattice Boltzmann equation with external boundary force, Int. J. Multiphase Flow, 36, 202-209 (2010)
[40] Ding, E. J.; Aidun, C. K., Extension of the lattice-Boltzmann method for direct simulation of suspended particles near contact, J. Stat. Phys, 112, 685-708 (2003) · Zbl 1035.82024
[41] Ladd, A. J.C., Numerical simulations of particulate suspensions via a discretized Boltzmann equation. I. Theoretical foundation, J. Fluid Mech., 285-309 (1994) · Zbl 0815.76085
[42] Lucci, F.; Ferrante, A.; Elghobashi, S., Modulation of isotropic turbulence by particles of Taylor length-scale size, J. Fluid Mech., 650, 5-55 (2010) · Zbl 1189.76251
[43] Tsuji, T.; Narutomi, R.; Yokomine, T.; Ebara, S.; Shimizu, A., Unsteady three-dimensional simulation of interactions between flow and two particles, Int. J. Multiphase Flow, 29, 1431-1450 (2003) · Zbl 1136.76662
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.