×

Carleman approximation on Riemann surfaces. (English) Zbl 0583.30035

A closed subset E of a non-compact (connected) Riemann surface R is called a set of holomorphic (respectively meromorphic) Carleman approximation if whenever f is continuous on E and holomorphic on the interior \(E^ 0\) of E and \(\epsilon\) is continuous and positive on E, there exists a holomorphic (respectively meromorphic) function g on R such that \[ | f(p)-g(p)| <\epsilon (p),\quad for\quad all\quad p\in E. \] A generalization of a result of A. H. Nersesyan [Izv. Akad. Nauk Arm. SSR, Ser. Mat. 6, 465-471 (1971; Zbl 0235.30041)] obtained previously in the case of the complex plane enable us to give a complete topological characterization of the sets of holomorphic Carleman approximation and to give a sufficient condition on the sets of meromorphic Carleman approximation in terms of Gleason parts. It is also shown that a necessary condition on the components of the interior of the sets of Carleman approximation introduced by P. M. Gauthier [Izv. Akad. Nauk Arm. SSR, Ser. Mat. 4, 319-326 (1969; Zbl 0189.360)] must also hold for the components of the fine interior.

MSC:

30E10 Approximation in the complex plane

References:

[1] Ahern, P.R.: On the generalized F. and M. Riesz theorem. Pac. J. Math.15, 373-379 (1965) · Zbl 0128.34801
[2] Ahern, P.R., Sarason, D.: On some hypodirichlet algebras of analytic functions. Am. J. Math.89, 932-941 (1967) · Zbl 0167.43801 · doi:10.2307/2373411
[3] Arakelyan, N.U.: Uniform and tangential approximations by analytic functions (Russian). Izv. Akad. Nauk Arm. SSR Ser. Mat.3, 273-286 (1968) · Zbl 0175.07602
[4] Behnke, H., Stein, K.: Entwicklung analytischer Funktionen auf Riemannschen Flächen. Math. Ann.120, 430-461 (1949) · Zbl 0038.23502 · doi:10.1007/BF01447838
[5] Bishop, E.: Subalgebras of functions on a Riemann surface. Pac. J. Math.8, 29-50 (1958) · Zbl 0083.06201
[6] Boivin, A.: On Carleman approximation by meromorphic functions. In: Analytic functions. Proc. Conf. Blazejewko, Poland 1982, ed. J. Lawrynowicz. Lect. Notes Math. 1039, pp. 9-15. Berlin, Heidelberg, New York: Springer 1983
[7] Boivin, A.: Approximation uniforme harmonique et tangentielle holomorphe ou méromorphe sur les surfaces de Riemann. Ph.D. thesis, Université de Montréal, 1984
[8] Boivin, A.:T-invariant algebras on Riemann surfaces (manuscript) · Zbl 0695.30035
[9] Brelot, M.: Sur l’approximation et la convergence dans la théorie des fonctions harmoniques ou holomorphes. Bull. Soc. Math. Fr.73, 55-70 (1945) · Zbl 0061.22804
[10] Carleman, T.: Sur un théorème de Weierstrass. Ark. Mat. Astron. Fys.20B4, 1-5 (1927) · JFM 53.0237.02
[11] Davie, A.M.: Real annihilating measures forR(K). J. Funct. Anal.6, 357-386 (1970) · Zbl 0205.42301 · doi:10.1016/0022-1236(70)90067-4
[12] Débiard, A., Gaveau, B.: Potentiel fin et algèbres de fonctions analytiques I. J. Funct. Anal.16, 289-304 (1974) · Zbl 0297.31004 · doi:10.1016/0022-1236(74)90075-5
[13] Effros, E.G., Kazdan, J.L.: Applications of Choquet simplexes to elliptic and parabolic boundary value problems. J. Differ. Equations8, 95-134 (1970) · Zbl 0255.46018 · doi:10.1016/0022-0396(70)90040-9
[14] Forelli, F.: Analytic measures. Pac. J. Math.13, 571-578 (1963) · Zbl 0121.10401
[15] Fuglede, B.: Finely harmonic functions. Lect. Notes Math. 289. Berlin, Heidelberg, New York: Springer 1972 · Zbl 0248.31010
[16] Gaier, D.: Vorlesungen über Approximation im Komplexen. Basel, Boston, Stuttgart: Birkhäuser 1980 · Zbl 0442.30038
[17] Gamelin, T.W.: Embedding Riemann surfaces in maximal ideal spaces. J. Funct. Anal.2, 123-146 (1968) · Zbl 0172.18102 · doi:10.1016/0022-1236(68)90014-1
[18] Gamelin, T.W.: Uniform algebras. New York: Chelsea (2nd Edit.) 1984 · Zbl 0213.40401
[19] Gamelin, T.W., Lumer, G.: Theory, of abstract Hardy spaces and the Universal Hardy class. Adv. Math.2, 118-174 (1968) · Zbl 0221.46053 · doi:10.1016/0001-8708(68)90019-4
[20] Gamelin, T.W., Lyons, T.J.: Jensen measures forR(K). J. Lond. Math. Soc.27, 317-330 (1983) · Zbl 0509.31002 · doi:10.1112/jlms/s2-27.2.317
[21] Gamelin, T.W., Rossi, H.: Jensen measures and algebras of analytic functions. In: Function algebras. Proc. Conf. Tulane Univ. 1965, F. T. Birtel ed., pp. 15-35. Glenview, IL, London: Scott-Foresman 1966
[22] Gauthier, P.M.: Tangential approximation by entire functions and functions holomorphic in a disk. Izv. Akad. Nauk Arm. SSR Ser. Mat.4, 319-326 (1969) · Zbl 0189.36006
[23] Gauthier, P.M.: Meromorphic uniform approximation on closed subset of open Riemann surfaces. In: Approximation theory and functional analysis. Proc. Conf. Campinas 1977, J. B. Prolla ed., pp. 139-158. Amsterdam: North-Holland 1979
[24] Gauthier, P.M., Hengartner, W.: Uniform approximation on closed sets by functions analytic on a Riemann surface. In: Approximation theory. Proc. Conf. Pozman 1972, Z. Ciesielski, W. Musielak eds., pp. 63-69. Dordrecht, Boston: Reidel 1975 · Zbl 0322.30034
[25] Gauthier, P.M., Hengartner, W.: Approximation uniforme qualitative sur des ensembles nonbornés. Les Presses de l’Univ. de Montréal, 1982
[26] Glicksberg, I.: The abstract F. and M. Riesz theorem. J. Funct. Anal.1, 109-122 (1967) · Zbl 0155.18503 · doi:10.1016/0022-1236(67)90029-8
[27] Gunning, R.C., Narasimhan, R.: Immersion of open Riemann surfaces. Math. Ann.174, 103-108 (1967) · Zbl 0179.11402 · doi:10.1007/BF01360812
[28] Helms, L.L.: Introduction to Potential Theory. New York: Wiley 1969 · Zbl 0188.17203
[29] Kodama, L.K.: Boundary measures of analytic differentials and uniform approximation on a Riemann surface. Pac. J. Math.15, 1261-1277 (1965) · Zbl 0136.06703
[30] Mergelyan, S.N.: Uniform approximation to functions of a complex variable (Russian). Usp. Mat. Nauk72, 31-122 (1952) (Transl. A.M.S.3, 294-391 (1962)) · Zbl 0059.05902
[31] Nersesjan, A.H.: On Carleman sets (Russian). Izv. Akad. Nauk Arm. SSR Ser. Mat.6, 465-471 (1971)
[32] Rossi, H.: Algebras of holomorphic functions on one-dimensional varieties. Trans. A.M.S.100, 439-458 (1961) · Zbl 0141.12204 · doi:10.1090/S0002-9947-1961-0131164-5
[33] Roth, A.: Uniform and tangential approximation by meromorphic functions on closed sets. Can. J. Math.28, 104-111 (1976) · Zbl 0322.30035 · doi:10.4153/CJM-1976-012-3
[34] Scheinberg, S.: Uniform approximation by meromorphic functions having prescribed poles. Math. Ann.243, 83-93 (1979) · doi:10.1007/BF01420209
[35] Sinclair, A.: Strong Carleman and strong uniform approximation. Pac. J. Math.117, 417-427 (1985) · Zbl 0537.30025
[36] Stout, E.L.: The theory of uniform algebras. Belmont, Calif.: Bogden and Quigley 1971 · Zbl 0286.46049
[37] Wilken, D.: The support of representing measures forR(X). Pac. J. Math.26, 621-626 (1968) · Zbl 0188.44902
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.