×

Immersions of open Riemann surfaces into the Riemann sphere. (English. Russian original) Zbl 1470.32037

Izv. Math. 85, No. 3, 562-581 (2021); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 85, No. 3, 239-260 (2021).
Summary: In this paper we show that the space of holomorphic immersions from any given open Riemann surface \(M\) into the Riemann sphere \(\mathbb{CP}^1\) is weakly homotopy equivalent to the space of continuous maps from \(M\) to the complement of the zero section in the tangent bundle of \(\mathbb{CP}^1\). It follows in particular that this space has \(2^k\) path components, where \(k\) is the number of generators of the first homology group \(H_1(M,\mathbb{Z}=\mathbb{Z}^k\). We also prove a parametric version of the Mergelyan approximation theorem for maps from Riemann surfaces to an arbitrary complex manifold, a result used in the proof of our main theorem.

MSC:

32H02 Holomorphic mappings, (holomorphic) embeddings and related questions in several complex variables
58D10 Spaces of embeddings and immersions
57R42 Immersions in differential topology

References:

[1] Alarcón, A.; Forstnerič, F., Null curves and directed immersions of open Riemann surfaces, Invent. Math., 196, 3, 733-771 (2014) · Zbl 1297.32009 · doi:10.1007/s00222-013-0478-8
[2] Stein, H. Behnke und K., Entwicklung analytischer Funktionen auf Riemannschen Flächen, Math. Ann., 120, 430-461 (1947) · Zbl 0038.23502 · doi:10.1007/BF01447838
[3] Boivin, A.; Jiang, B., Uniform approximation by meromorphic functions on Riemann surfaces, J. Anal. Math., 93, 199-214 (2004) · Zbl 1084.30048 · doi:10.1007/BF02789307
[4] Cieliebak, K.; Eliashberg, Y., Amer. Math. Soc. Colloq. Publ., 59 (2012), Amer. Math. Soc.: Amer. Math. Soc., Providence, RI · Zbl 1262.32026 · doi:10.1090/coll/059
[5] Fornæss, J. E.; Forstnerič, F.; Wold, E. F., Holomorphic approximation: the legacy of Weierstrass, Runge, Oka-Weil, and Mergelyan, Advancements in complex analysis. From theory to practice, 133-192 (2020) · Zbl 1483.32020 · doi:10.1007/978-3-030-40120-7
[6] Forstnerič, F., Noncritical holomorphic functions on Stein manifolds, Acta Math., 191, 2, 143-189 (2003) · Zbl 1064.32021 · doi:10.1007/BF02392963
[7] Forstnerič, F., Ergeb. Math. Grenzgeb. (3), 56 (2017), Springer: Springer, Cham · Zbl 1382.32001 · doi:10.1007/978-3-319-61058-0
[8] Forstnerič, F., Mergelyan’s and Arakelian’s theorems for manifold-valued maps, Mosc. Math. J., 19, 3, 465-484 (2019) · Zbl 1475.30088 · doi:10.17323/1609-4514-2019-19-3-465-484
[9] Forstnerič, F.; Lárusson, F., The parametric \(h\)-principle for minimal surfaces in \(\mathbb{R}^n\) and null curves in \(\mathbb{C}^n\), Comm. Anal. Geom., 27, 1, 1-45 (2019) · Zbl 1414.53009 · doi:10.4310/CAG.2019.v27.n1.a1
[10] Forstnerič, F.; Slapar, M., Stein structures and holomorphic mappings, Math. Z., 256, 3, 615-646 (2007) · Zbl 1129.32013 · doi:10.1007/s00209-006-0093-0
[11] Gamelin, T. W., Uniform algebras (1984), Chelsea: Chelsea, New York · Zbl 0213.40401
[12] Gromov, M., Ergeb. Math. Grenzgeb. (3), 9 (1986), Springer-Verlag: Springer-Verlag, Berlin · Zbl 0651.53001 · doi:10.1007/978-3-662-02267-2
[13] Gromov, M. L., Convex integration of differential relations. I, Izv. Akad. Nauk SSSR Ser. Mat., 37, 2, 329-343 (1973) · Zbl 0254.58001 · doi:10.1070/IM1973v007n02ABEH001940
[14] Gromov, M. L.; Éliashberg, Ya. M., Nonsingular mappings of Stein manifolds, Funkts. Anal. Prilozhen., 5, 2, 82-83 (1971) · Zbl 0234.32011 · doi:10.1007/BF01076422
[15] Gunning, R. C.; Narasimhan, R., Immersion of open Riemann surfaces, Math. Ann., 174, 103-108 (1967) · Zbl 0179.11402 · doi:10.1007/BF01360812
[16] Hirsch, M. W., Immersions of manifolds, Trans. Amer. Math. Soc., 93, 2, 242-276 (1959) · Zbl 0113.17202 · doi:10.1090/S0002-9947-1959-0119214-4
[17] Kolarič, D., Parametric H-principle for holomorphic immersions with approximation, Differential Geom. Appl., 29, 3, 292-298 (2011) · Zbl 1239.32010 · doi:10.1016/j.difgeo.2011.04.028
[18] Michael, E., Continuous selections. I, Ann. of Math. (2), 63, 2, 361-382 (1956) · Zbl 0071.15902 · doi:10.2307/1969615
[19] Poletsky, E. A., Stein neighborhoods of graphs of holomorphic mappings, J. Reine Angew. Math., 2013, 684, 187-198 (2013) · Zbl 1282.32007 · doi:10.1515/crelle-2011-0009
[20] Runge, C., Zur Theorie der Eindeutigen Analytischen Functionen, Acta Math., 6, 1, 229-244 (1885) · JFM 17.0379.01 · doi:10.1007/BF02400416
[21] Smale, S., The classification of immersions of spheres in Euclidean spaces, Ann. of Math. (2), 69, 2, 327-344 (1959) · Zbl 0089.18201 · doi:10.2307/1970186
[22] Vitushkin, A. G., Necessary and sufficient conditions on a set in order that any continuous function analytic at the interior points of the set may admit of uniform approximation by rational fractions, Dokl. Akad. Nauk SSSR, 171, 6, 1255-1258 (1966) · Zbl 0162.09702
[23] Vitushkin, A. G., The analytic capacity of sets in problems of approximation theory, Uspekhi Mat. Nauk, 22, 6-138, 141-199 (1967) · Zbl 0164.37701 · doi:10.1070/RM1967v022n06ABEH003763
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.