×

Compact binary coalescences: constraints on waveforms. (English) Zbl 1465.83011

Summary: Gravitational waveforms for compact binary coalescences (CBCs) have been invaluable for detections by the LIGO-Virgo collaboration. They are obtained by a combination of semi-analytical models and numerical simulations. So far systematic errors arising from these procedures appear to be less than statistical ones. However, the significantly enhanced sensitivity of the new detectors that will become operational in the near future will require waveforms to be much more accurate. This task would be facilitated if one has a variety of cross-checks to evaluate accuracy, particularly in the regions of parameter space where numerical simulations are sparse. Currently errors are estimated by comparing the candidate waveforms with the numerical relativity (NR) ones, which are taken to be exact. The goal of this paper is to propose a qualitatively different tool. We show that full non-linear general relativity (GR) imposes an infinite number of sharp constraints on the CBC waveforms. These can provide clear-cut measures to evaluate the accuracy of candidate waveforms against exact GR, help find systematic errors, and also provide external checks on NR simulations themselves.

MSC:

83C35 Gravitational waves
83-08 Computational methods for problems pertaining to relativity and gravitational theory
85A05 Galactic and stellar dynamics
53Z05 Applications of differential geometry to physics

References:

[1] Boyle, M., The SXS Collaboration catalog of binary black hole simulations, Class. Quantm Gravity, 36, 195006 (2019) · doi:10.1088/1361-6382/ab34e2
[2] Ajith, P.; Hannam, M.; Husa, S.; Chen, Y.; Brügmann, B.; Dorband, N.; Müller, D.; Ohme, F.; Pollney, D.; Reisswig, C.; Santamaría, L.; Seiler, J., Inspiral-merger-ringdown waveforms for black-hole binaries with nonprecessing spins, Phys. Rev. Lett., 106, 241101 (2011) · doi:10.1103/PhysRevLett.106.241101
[3] Santamaría, L.; Ohme, F.; Ajith, P.; Brügmann, B.; Dorband, N.; Hannam, M.; Husa, S.; Mösta, P.; Pollney, D.; Reisswig, C.; Robinson, EL; Seiler, J.; Krishnan, B., Matching post-Newtonian and numerical relativity waveforms: systematic errors and a new phenomenological model for nonprecessing black hole binaries, Phys. Rev. D, 82, 064016 (2010) · doi:10.1103/PhysRevD.82.064016
[4] Husa, S.; Khan, S.; Hannam, M.; Pürrer, M.; Ohme, F.; Jiménez Forteza, X.; Bohé, A., Frequency-domain gravitational waves from nonprecessing black-hole binaries. I. New numerical waveforms and anatomy of the signal, Phys. Rev. D, 93, 044006 (2016) · doi:10.1103/PhysRevD.93.044006
[5] Khan, S.; Husa, S.; Hannam, M.; Ohme, F.; Pürrer, M.; Jiménez Forteza, X.; Bohé, A., Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era, Phys. Rev. D, 93, 044007 (2016) · doi:10.1103/PhysRevD.93.044007
[6] Hannam, M.; Schmidt, P.; Bohé, A.; Haegel, L.; Husa, S.; Ohme, F.; Pratten, G.; Pürrer, M., Simple model of complete precessing black-hole-binary gravitational waveforms, Phys. Rev. Lett., 113, 151101 (2014) · doi:10.1103/PhysRevLett.113.151101
[7] Damour, T., Nagar, A.: In: Haardt, F., Gorini, V., Moschella, U., Treves, A., Colpi, M. (eds.)Astrophysical Black Holes, Lecture Notes in Physics, vol. 905, pp. 273-312. Springer, Berlin (2016). doi:10.1007/978-3-319-19416-5_7
[8] Buonanno, A.; Pan, Y.; Pfeiffer, HP; Scheel, MA; Buchman, LT; Kidder, LE, Effective-one-body waveforms calibrated to numerical relativity simulations: coalescence of non-spinning, equal-mass black holes, Phys. Rev. D, 79, 124028 (2009) · doi:10.1103/PhysRevD.79.124028
[9] Taracchini, A.; Buonanno, A.; Pan, Y.; Hinderer, T.; Boyle, M.; Hemberger, DA; Kidder, LE; Lovelace, G.; Mroué, AH; Pfeiffer, HP; Scheel, MA; Szilágyi, B.; Taylor, NW; Zenginoglu, A., Effective-one-body model for black-hole binaries with generic mass ratios and spins, Phys. Rev. D, 89, 061502 (2014) · doi:10.1103/PhysRevD.89.061502
[10] Bohé, A., Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors, Phys. Rev. D, 95, 044028 (2017) · doi:10.1103/PhysRevD.95.044028
[11] Pan, Y.; Buonanno, A.; Taracchini, A.; Kidder, LE; Mroué, AH; Pfeiffer, HP; Scheel, MA; Szilágyi, B., Inspiral-merger-ringdown waveforms of spinning, precessing black-hole binaries in the effective-one-body formalism, Phys. Rev. D, 89, 084006 (2014) · doi:10.1103/PhysRevD.89.084006
[12] Nagar, A.; Messina, F.; Rettegno, P.; Bini, D.; Damour, T.; Geralico, A.; Akcay, S.; Bernuzzi, S., Nonlinear-in-spin effects in effective-one-body waveform models of spin-aligned, inspiralling, neutron star binaries, Phys. Rev. D, 99, 044007 (2019) · doi:10.1103/PhysRevD.99.044007
[13] Nagar, A.; Bernuzzi, S.; Del Pozzo, W.; Riemenschneider, G.; Akcay, S.; Carullo, G.; Fleig, P.; Babak, S.; Tsang, KW; Colleoni, M., Time-domain effective-one-body gravitational waveforms for coalescing compact binaries with nonprecessing spins, tides, and self-spin effects, Phys. Rev. D, 98, 104052 (2018) · doi:10.1103/PhysRevD.98.104052
[14] Field, SE; Galley, CR; Hesthaven, JS; Kaye, J.; Tiglio, M., Fast prediction and evaluation of gravitational waveforms using surrogate models, Phys. Rev. X, 4, 031006 (2014) · doi:10.1103/PhysRevX.4.031006
[15] Varma, V.; Field, SE; Scheel, MA; Blackman, J.; Kidder, LE; Pfeiffer, HP, Surrogate model of hybridized numerical relativity binary black hole waveforms, Phys. Rev. D, 99, 064045 (2019) · doi:10.1103/PhysRevD.99.064045
[16] Rifat, NEM; Field, SE; Khanna, G.; Varma, V., Surrogate model for gravitational wave signals from comparable and large-mass-ratio black hole binaries, Phys. Rev. D, 101, 081502 (2020) · doi:10.1103/PhysRevD.101.081502
[17] Lackey, BD; Pürrer, M.; Taracchini, A.; Marsat, S., Surrogate model for an aligned-spin effective one body waveform model of binary neutron star inspirals using Gaussian process regression, Phys. Rev. D, 100, 024002 (2019) · doi:10.1103/PhysRevD.100.024002
[18] Kumar, P.; Chu, T.; Fong, H.; Pfeiffer, HP; Boyle, M.; Hemberger, DA; Kidder, LE; Scheel, MA; Szilagyi, B., Accuracy of binary black hole waveform models for aligned-spin binaries, Phys. Rev. D, 93, 104050 (2016) · doi:10.1103/PhysRevD.93.104050
[19] Pürrer, M.; Haster, CJ, Gravitational waveform accuracy requirements for future ground-based detectors, Phys. Rev. Res., 2, 023151 (2020) · doi:10.1103/PhysRevResearch.2.023151
[20] Aasi, J., Advanced LIGO, Class. Quantum Gravity, 32, 074001 (2015) · doi:10.1088/0264-9381/32/7/074001
[21] Acernese, F., Advanced Virgo: a second-generation interferometric gravitational wave detector, Class. Quantum Gravity, 32, 024001 (2015) · doi:10.1088/0264-9381/32/2/024001
[22] Aso, Y.; Michimura, Y.; Somiya, K.; Ando, M.; Miyakawa, O.; Sekiguchi, T.; Tatsumi, D.; Yamamoto, H., Interferometer design of the KAGRA gravitational wave detector, Phys. Rev. D, 88, 043007 (2013) · doi:10.1103/PhysRevD.88.043007
[23] Unnikrishnan, CS, IndIGO and LIGO-India: Scope and plans for gravitational wave research and precision metrology in India, Int. J. Mod. Phys. D, 22, 1341010 (2013) · doi:10.1142/S0218271813410101
[24] Punturo, M., The Einstein Telescope: a third-generation gravitational wave observatory, Class. Quantum Gravity, 27, 194002 (2010) · doi:10.1088/0264-9381/27/19/194002
[25] Reitze, D., Cosmic explorer: the U.S. contribution to gravitational-wave astronomy beyond LIGO, Bull. Am. Astron. Soc., 51, 035 (2019)
[26] Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna, arXiv e-prints (2017)
[27] Luo, J., TianQin: a space-borne gravitational wave detector, Class. Quantum Gravity, 33, 035010 (2016) · doi:10.1088/0264-9381/33/3/035010
[28] Kawamura, S., The Japanese space gravitational wave antenna DECIGO, Class. Quantum Gravity, 23, S125 (2006) · doi:10.1088/0264-9381/23/8/S17
[29] Buonanno, A.: New approaches to GW source modeling: Overview (2019). https://www.icts.res.in/discussion-meeting/fgwa19/talks. Talk at the discussion meeting on The Future of Gravitational Wave Astronomy, held at ICTS, Bangalore (August 19-22 2019)
[30] Yunes, N.; Pretorius, F., Fundamental theoretical bias in gravitational wave astrophysics and the parameterized post-einsteinian framework, Phys. Rev. D, 80, 122003 (2009) · doi:10.1103/PhysRevD.80.122003
[31] London, L.; Khan, S.; Fauchon-Jones, E.; García, C.; Hannam, M.; Husa, S.; Jiménez-Forteza, X.; Kalaghatgi, C.; Ohme, F.; Pannarale, F., First higher-multipole model of gravitational waves from spinning and coalescing black-hole binaries, Phys. Rev. Lett., 120, 161102 (2018) · doi:10.1103/PhysRevLett.120.161102
[32] Cotesta, R.; Buonanno, A.; Bohé, A.; Taracchini, A.; Hinder, I.; Ossokine, S., Enriching the symphony of gravitational waves from binary black holes by tuning higher harmonics, Phys. Rev. D, 98, 084028 (2018) · doi:10.1103/PhysRevD.98.084028
[33] Khan, S.; Ohme, F.; Chatziioannou, K.; Hannam, M., Including higher order multipoles in gravitational-wave models for precessing binary black holes, Phys. Rev. D, 101, 024056 (2020) · doi:10.1103/PhysRevD.101.024056
[34] Khan, S.; Chatziioannou, K.; Hannam, M.; Ohme, F., Phenomenological model for the gravitational-wave signal from precessing binary black holes with two-spin effects, Phys. Rev. D, 100, 024059 (2019) · doi:10.1103/PhysRevD.100.024059
[35] Blackman, J.; Field, SE; Scheel, MA; Galley, CR; Hemberger, DA; Schmidt, P.; Smith, R., A surrogate model of gravitational waveforms from numerical relativity simulations of precessing binary black hole mergers, Phys. Rev. D, 95, 104023 (2017) · doi:10.1103/PhysRevD.95.104023
[36] Apostolatos, TA; Cutler, C.; Sussman, GJ; Thorne, KS, Spin induced orbital precession and its modulation of the gravitational wave forms from merging binaries, Phys. Rev. D, 49, 6274 (1994) · doi:10.1103/PhysRevD.49.6274
[37] Varma, V.; Field, SE; Scheel, MA; Blackman, J.; Gerosa, D.; Stein, LC; Kidder, LE; Pfeiffer, HP, Surrogate models for precessing binary black hole simulations with unequal masses, Phys. Rev. Res., 1, 033015 (2019) · doi:10.1103/PhysRevResearch.1.033015
[38] Kidder, LE, SpECTRE: a task-based discontinuous Galerkin code for relativistic astrophysics, J. Comput. Phys., 335, 84 (2017) · Zbl 1380.65274 · doi:10.1016/j.jcp.2016.12.059
[39] Pan, Y.; Buonanno, A.; Baker, JG; Centrella, J.; Kelly, BJ; McWilliams, ST; Pretorius, F.; van Meter, JR, A Data-analysis driven comparison of analytic and numerical coalescing binary waveforms: nonspinning case, Phys. Rev. D, 77, 024014 (2008) · doi:10.1103/PhysRevD.77.024014
[40] Lindblom, L.; Owen, BJ; Brown, DA, Model waveform accuracy standards for gravitational wave data analysis, Phys. Rev. D, 78, 124020 (2008) · doi:10.1103/PhysRevD.78.124020
[41] MacDonald, I.; Mroue, AH; Pfeiffer, HP; Boyle, M.; Kidder, LE; Scheel, MA; Szilagyi, B.; Taylor, NW, Suitability of hybrid gravitational waveforms for unequal-mass binaries, Phys. Rev. D, 87, 024009 (2013) · doi:10.1103/PhysRevD.87.024009
[42] Kumar, P.; Barkett, K.; Bhagwat, S.; Afshari, N.; Brown, DA; Lovelace, G.; Scheel, MA; Szilágyi, B., Accuracy and precision of gravitational-wave models of inspiraling neutron star-black hole binaries with spin: comparison with matter-free numerical relativity in the low-frequency regime, Phys. Rev. D, 92, 102001 (2015) · doi:10.1103/PhysRevD.92.102001
[43] Bondi, H.; van der Burg, MGJ; Metzner, AWK, Gravitational waves in general relativity. VII. Waves from axisymmetric isolated systems, Proc. R. Soc. Lond. Ser. A, 269, 21 (1962) · Zbl 0106.41903 · doi:10.1098/rspa.1962.0161
[44] Sachs, RK; Bondi, H., Gravitational waves in general relativity. VIII. Waves in asymptotically flat space-time, Proc. R. Soc. Lond. Ser. A, 270, 103 (1962) · Zbl 0101.43605 · doi:10.1098/rspa.1962.0206
[45] Infeld, I., Relativistic Theories of Gravitation (1964), Oxford: Pergamon Press, Oxford · Zbl 0142.46402
[46] Khera, N., Krishnan, B., Ashtekar, A., De Lorenzo, T.: Inferring the gravitational wave memory for binary coalescence events, arXiv e-prints (2020)
[47] Mitman, K., Iozzo, D., Khera, N., Boyle, M., De Lorenzo, T., Kidder, L., Moxon, J., Pfeiffer, H., Scheel, M.A., Teukolsky, S.A.: Adding Gravitational Memory to the SXS Catalog using BMS Balance Laws. (2020) arXiv:2011.01309v1
[48] Ashtekar, A.; De Lorenzo, T.; Khera, N., Compact binary coalescences: the subtle issue of angular momentum, Phys. Rev. D, 101, 044005 (2020) · doi:10.1103/PhysRevD.101.044005
[49] Ashtekar, A., Khera, N., Krishnan, B.: Using balance laws to infer the spin of the final black hole for binary coalescence events (2020) (in preparation)
[50] Geroch, R.: In: Esposito, F.P., Witten, L. (eds.) Asymptotic Structure of Space-Time, pp. 1-105. Springer US, Boston (1977). doi:10.1007/978-1-4684-2343-3_1
[51] Ashtekar, A.; Streubel, M., Symplectic geometry of radiative modes and conserved quantities at null infinity, Proc. R. Soc. Lond. Ser. A, 376, 585 (1981) · doi:10.1098/rspa.1981.0109
[52] Ashtekar, A.: In: Bieri, L., Yau, S.T. (eds.) Surveys in Differential Geometry 2015: 100 Years of General Relativity. A Jubilee Volume on General Relativity and Mathematics, pp. 99-122. International Press, Boston (2015). doi:10.4310/SDG.2015.v20.n1.a5 · Zbl 1339.83002
[53] Penrose, R., Zero rest mass fields including gravitation: asymptotic behavior, Proc. R. Soc. Lond. Ser. A, 284, 159 (1965) · Zbl 0129.41202 · doi:10.1098/rspa.1965.0058
[54] Bohé, A.; Shao, L.; Taracchini, A.; Buonanno, A.; Babak, S.; Harry, IW; Hinder, I.; Ossokine, S.; Pürrer, M.; Raymond, V., Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors, Phys. Rev. D, 95, 044028 (2017) · doi:10.1103/PhysRevD.95.044028
[55] Ashtekar, A., Radiative degrees of freedom of the gravitational field in exact general relativity, J. Math. Phys., 22, 2885 (1981) · doi:10.1063/1.525169
[56] Newman, ET; Penrose, R., New conservation laws for zero rest-mass fields in asymptotically flat space-time, Proc. R. Soc. Lond. Ser. A, 305, 175 (1968) · doi:10.1098/rspa.1968.0112
[57] Dray, T., Momentum flux at null infinity, Class. Quantum Gravity, 2, L7 (1985) · Zbl 0576.53066 · doi:10.1088/0264-9381/2/1/002
[58] Kesavan, A.: Asymptotic structure of space-time with a positive cosmological constant. Ph.D. thesis, Penn State U. (2016-06-02). https://etda.libraries.psu.edu/catalog/f4752g72m
[59] Friedrich, H., Peeling or not peeling-is that the question?, Class. Quantum Gravity, 35, 083001 (2018) · Zbl 1409.83043 · doi:10.1088/1361-6382/aaafdb
[60] Blanchet, L., Damour, T.: Radiative gravitational fields in general relativity. I. General structure of the field outside the source. Philos. Trans. R. Soc. Lond. Ser. A 320, 379 (1986). doi:10.1098/rsta.1986.0125 · Zbl 0604.35073
[61] Blanchet, L., Gravitational radiation from post-Newtonian sources and inspiralling compact binaries, Living Rev. Relativ., 17, 2 (2014) · Zbl 1316.83003 · doi:10.12942/lrr-2014-2
[62] Ashtekar, A., Asymptotic Quantization: Based on 1984 Naples Lectures, Monographs and Textbooks in Physical Science (1987), Naples: Bibliopolis, Naples · Zbl 0621.53064
[63] Sachs, RK, Asymptotic symmetries in gravitational theory, Phys. Rev., 128, 2851 (1962) · Zbl 0114.21202 · doi:10.1103/PhysRev.128.2851
[64] Newman, ET; Penrose, R., Note on the Bondi-Metzner-Sachs group, J. Math. Phys., 7, 863 (1966) · doi:10.1063/1.1931221
[65] Ashtekar, A.; Magnon-Ashtekar, A., On the symplectic structure of general relativity, Commun. Math. Phys., 86, 55 (1982) · Zbl 0504.53049 · doi:10.1007/BF01205661
[66] Winicour, J., Some total invariants of asymptotically flat space-times, J. Math. Phys., 9, 861 (1968) · Zbl 0169.57702 · doi:10.1063/1.1664652
[67] Bramson, BD; Penrose, R., Relativistic angular momentum for asymptotically flat Einstein-Maxwell manifolds, Proc. R. Soc. Lond. Ser. A, 341, 463 (1975) · Zbl 0296.53046 · doi:10.1098/rspa.1975.0004
[68] Prior, CR; Hawking, SW, Angular momentum in general relativity. I. Definition and asymptotic behaviour, Proc. R. Soc. Lond. Ser. A, 354, 379 (1977) · doi:10.1098/rspa.1977.0073
[69] Streubel, M., “Conserved” quantities for isolated gravitational systems, Gen. Relativ. Gravit., 9, 551 (1978) · doi:10.1007/BF00759549
[70] Geroch, R.; Winicour, J., Linkages in general relativity, J. Math. Phys., 22, 803 (1981) · Zbl 0479.70004 · doi:10.1063/1.524987
[71] Ashtekar, A.; Winicour, J., Linkages and hamiltonians at null infinity, J. Math. Phys., 23, 2410 (1982) · Zbl 0497.53061 · doi:10.1063/1.525283
[72] Dray, T.; Streubel, M., Angular momentum at null infinity, Class. Quantum Gravity, 1, 15 (1984) · Zbl 1136.83316 · doi:10.1088/0264-9381/1/1/005
[73] Streubel, M.: “Conserved” quantities related to asymptotic symmetries for isolated systems in general relativity. Ph.D. thesis, Max Planck Institut für Astrophysik, München MPI PAE/ Astro 165 (1978)
[74] Baker, JG; Boggs, WD; Centrella, J.; Kelly, BJ; McWilliams, ST; Miller, MC; van Meter, JR, Modeling kicks from the merger of nonprecessing black hole binaries, Astrophys. J., 668, 1140 (2007) · doi:10.1086/521330
[75] Campanelli, M.; Lousto, CO; Zlochower, Y.; Merritt, D., Large merger recoils and spin flips from generic black-hole binaries, Astrophys. J. Lett., 659, L5 (2007) · doi:10.1086/516712
[76] De Lorenzo, T.: Constraints on GW Waveforms (2020). http://meetings.aps.org/Meeting/APR20/Session/T16.7. Talk at Virtual April APS Meeting, Session T16: Approximate Methods in Gravitational Astrophysics
[77] Kidder, B.: Personal communication to AA (2019)
[78] Iozzo, D.: Personal communication to TDL and NK (2019)
[79] Iyer, B.: Personal communication to AA (2019)
[80] Poisson, E.: Personal communication to AA (2019)
[81] Beig, R.; Simon, W., The stationary gravitational field near spatial infinity, Gen. Relativ. Gravit., 12, 1003 (1980) · doi:10.1007/BF00768926
[82] Satishchandran, G.; Wald, RM, Asymptotic behavior of massless fields and the memory effect, Phys. Rev. D, 99, 084007 (2019) · doi:10.1103/PhysRevD.99.084007
[83] Abbott, BP, GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and virgo during the first and second observing runs, Phys. Rev. X, 9, 031040 (2019) · doi:10.1103/PhysRevX.9.031040
[84] Littenberg, TB; Baker, JG; Buonanno, A.; Kelly, BJ, Systematic biases in parameter estimation of binary black-hole mergers, Phys. Rev. D, 87, 104003 (2013) · doi:10.1103/PhysRevD.87.104003
[85] Brown, DA; Kumar, P.; Nitz, AH, Template banks to search for low-mass binary black holes in advanced gravitational-wave detectors, Phys. Rev. D, 87, 082004 (2013) · doi:10.1103/PhysRevD.87.082004
[86] Capano, C.; Pan, Y.; Buonanno, A., Impact of higher harmonics in searching for gravitational waves from nonspinning binary black holes, Phys. Rev. D, 89, 102003 (2014) · doi:10.1103/PhysRevD.89.102003
[87] Varma, V.; Ajith, P.; Husa, S.; Bustillo, JC; Hannam, M.; Pürrer, M., Gravitational-wave observations of binary black holes: effect of nonquadrupole modes, Phys. Rev. D, 90, 124004 (2014) · doi:10.1103/PhysRevD.90.124004
[88] Babak, S.; Taracchini, A.; Buonanno, A., Validating the effective-one-body model of spinning, precessing binary black holes against numerical relativity, Phys. Rev. D, 95, 024010 (2017) · doi:10.1103/PhysRevD.95.024010
[89] Boyle, M., Transformations of asymptotic gravitational-wave data, Phys. Rev. D, 93, 084031 (2016) · doi:10.1103/PhysRevD.93.084031
[90] Garfinkle, D., A simple estimate of gravitational wave memory in binary black hole systems, Class. Quantum Gravity, 33, 177001 (2016) · Zbl 1349.83022 · doi:10.1088/0264-9381/33/17/177001
[91] Pollney, D.; Reisswig, C., Gravitational memory in binary black hole mergers, Astrophys. J., 732, L13 (2011) · doi:10.1088/2041-8205/732/1/L13
[92] Christodoulou, D., Klainerman, S.: The Global Nonlinear Stability of the Minkowski Space (PMS-41). Princeton University Press, Princeton (1994). doi:10.1515/9781400863174 · Zbl 0733.35105
[93] Chrusciel, PT; Delay, E., Existence of non-trivial, vacuum, asymptotically simple spacetimes, Class. Quantum Gravity, 19, L71 (2002) · Zbl 1005.83009 · doi:10.1088/0264-9381/19/9/101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.