×

Axisymmetric hydrodynamics in numerical relativity using a multipatch method. (English) Zbl 1479.83032

Summary: We describe a method of implementing the axisymmetric evolution of general-relativistic hydrodynamics and magnetohydrodynamics through modification of a multipatch grid scheme. In order to ease the computational requirements required to evolve the post-merger phase of systems involving binary compact massive objects in numerical relativity, it is often beneficial to take advantage of these system’s tendency to rapidly settle into states that are nearly axisymmetric, allowing for 2D evolution of secular timescales. We implement this scheme in the spectral Einstein code and show the results of application of this method to four test systems including viscosity, magnetic fields, and neutrino radiation transport. Our results show that this method can be used to quickly allow already existing 3D infrastructure that makes use of local coordinate system transformations to be made to run in axisymmetric 2D with the flexible grid creation capabilities of multipatch methods. Our code tests include a simple model of a binary neutron star postmerger remnant, for which we confirm the formation of a massive torus which is a promising source of post-merger ejecta.

MSC:

83C27 Lattice gravity, Regge calculus and other discrete methods in general relativity and gravitational theory
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
76Y05 Quantum hydrodynamics and relativistic hydrodynamics
81V15 Weak interaction in quantum theory
76W05 Magnetohydrodynamics and electrohydrodynamics
83E05 Geometrodynamics and the holographic principle

Software:

SpEC

References:

[1] Abbott B P et al and LIGO Scientific, Virgo 2016 Phys. Rev. Lett.116 061102 · doi:10.1103/PhysRevLett.116.061102
[2] Abbott B P et al and LIGO Scientific, Virgo 2016 Phys. Rev. Lett.116 241102 · doi:10.1103/PhysRevLett.116.241102
[3] Abbott B P et al and LIGO Scientific, Virgo 2016 Phys. Rev. Lett.116 241103 · doi:10.1103/PhysRevLett.116.241103
[4] Abbott B P et al and LIGO Scientific, Virgo 2017 Phys. Rev. Lett.118 221101 · doi:10.1103/PhysRevLett.118.221101
[5] Abbott B P et al and LIGO Scientific, Virgo 2017 Astrophys. J. Lett.851 L35 · doi:10.3847/2041-8213/aa9f0c
[6] Abbott B P et al and LIGO Scientific, Virgo 2017 Phys. Rev. Lett.119 141101 · doi:10.1103/PhysRevLett.119.141101
[7] Abbott B et al 2019 Phys. Rev. X 9 031040 · doi:10.1103/PhysRevX.9.031040
[8] Abbott B P et al and LIGO Scientific, Virgo 2017 Phys. Rev. Lett.119 161101 · doi:10.1103/PhysRevLett.119.161101
[9] Abbott B P et al and LIGO Scientific, Virgo, Fermi GBM, INTEGRAL, IceCube, AstroSat Cadmium Zinc Telluride Imager Team, IPN, Insight-Hxmt, ANTARES, Swift, AGILE Team, 1M2H Team, Dark Energy Camera GW-EM, DES, DLT40, GRAWITA, Fermi-LAT, ATCA, ASKAP, Las Cumbres Observatory Group, OzGrav, DWF (Deeper Wider Faster Program), AST3, CAASTRO, VINROUGE, MASTER, J-GEM, GROWTH, JAGWAR, CaltechNRAO, TTU-NRAO, NuSTAR, Pan-STARRS, MAXI Team, TZAC Consortium, KU, Nordic Optical Telescope, ePESSTO, GROND, Texas Tech University, SALT Group, TOROS, BOOTES, MWA, CALET, IKI-GW Follow-up, H.E.S.S., LOFAR, LWA, HAWC, Pierre Auger, ALMA, Euro VLBI Team, Pi of Sky, Chandra Team at McGill University, DFN, ATLAS Telescopes, High Time Resolution Universe Survey, RIMAS, RATIR, SKA South Africa/MeerKAT 2017 Astrophys. J. Lett.848 L12 · doi:10.3847/2041-8213/aa91c9
[10] Abbott B P et al and LIGO Scientific, Virgo, FermiGBM, INTEGRAL 2017 Astrophys. J. Lett.848 L13 · doi:10.3847/2041-8213/aa920c
[11] Abbott B P et al and LIGO Scientific, Virgo 2020 Gw190425: observation of a compact binary coalescence with total mass ∼3.4m⊙ (arXiv:2001.01761)
[12] Shibata M and Kiuchi K 2017 Phys. Rev. D 95 123003 · doi:10.1103/PhysRevD.95.123003
[13] Hotokezaka K, Kiuchi K, Kyutoku K, Muranushi T, Sekiguchi Y i, Shibata M and Taniguchi K 2013 Phys. Rev. D 88 044026 · doi:10.1103/physrevd.88.044026
[14] Paschalidis V, Etienne Z B and Shapiro S L 2012 Phys. Rev. D 86 064032 · doi:10.1103/physrevd.86.064032
[15] Alcubierre M, Brügmann B, Holz D, Takahashi R, Brandt S, Seidel E and Thornburg J 2001 Int. J. Mod. Phys. D 10 273-89 · doi:10.1142/s0218271801000834
[16] Duez M D, Liu Y T, Shapiro S L and Stephens B C 2004 Phys. Rev. D 69 104030 · doi:10.1103/PhysRevD.69.104030
[17] Duez M D, Liu Y T, Shapiro S L, Shibata M and Stephens B C 2006 Phys. Rev. D 73 104015 · doi:10.1103/PhysRevD.73.104015
[18] Shibata M 2003 Astrophys. J.595 992-9 · doi:10.1086/377435
[19] Pretorius F 2005 Class. Quantum Grav.22 425-51 · Zbl 1067.83001 · doi:10.1088/0264-9381/22/2/014
[20] Baumgarte T W, Montero P J, Cordero-Carrión I and Müller E 2013 Phys. Rev. D 87 044026 · doi:10.1103/PhysRevD.87.044026
[21] Montero P J, Baumgarte T W and Müller E 2014 Phys. Rev. D 89 084043 · doi:10.1103/PhysRevD.89.084043
[22] Baumgarte T W, Montero P J and Müller E 2015 Phys. Rev. D 91 064035 · doi:10.1103/PhysRevD.91.064035
[23] Anderson M, Hirschmann E W, Lehner L, Liebling S L, Motl P M, Neilsen D, Palenzuela C and Tohline J E 2008 Phys. Rev. D 77 024006 · doi:10.1103/PhysRevD.77.024006
[24] Koldoba A V, Romanova M M, Ustyugova G V and Lovelace R V E 2002 Astrophys. J.576 L53-6 · doi:10.1086/342780
[25] Schnetter E, Diener P, Dorband E N and Tiglio M 2006 Class. Quantum Grav.23 S553-78 · Zbl 1191.83006 · doi:10.1088/0264-9381/23/16/S14
[26] Reisswig C, Bishop N T, Lai C W, Thornburg J and Szilágyi B 2007 Class. Quantum Grav.24 S327-40 · Zbl 1117.83013 · doi:10.1088/0264-9381/24/12/s21
[27] Zink B, Schnetter E and Tiglio M 2008 Phys. Rev. D 77 103015 · doi:10.1103/physrevd.77.103015
[28] Fragile P C, Lindner C C, Anninos P and Salmonson J D 2009 Astrophys. J.691 482-94 · doi:10.1088/0004-637x/691/1/482
[29] Hossein Nouri F et al 2018 Phys. Rev. D 97 083014 · doi:10.1103/PhysRevD.97.083014
[30] Simulating eXtreme Spacetimes (SXS) collaboration 2020 SpEC: spectral Einstein code https://black-holes.org/code/SpEC.html(accessed 25 February 2020)
[31] Hébert F, Kidder L E and Teukolsky S A 2018 Phys. Rev. D 98 044041 · doi:10.1103/PhysRevD.98.044041
[32] Kidder L E et al 2017 J. Comput. Phys.335 84-114 · Zbl 1380.65274 · doi:10.1016/j.jcp.2016.12.059
[33] Shibata M, Kiuchi K and Sekiguchi Y i 2017 Phys. Rev. D 95 083005 · doi:10.1103/PhysRevD.95.083005
[34] Lindblom L, Scheel M A, Kidder L E, Owen R and Rinne O 2006 Class. Quantum Grav.23 S447-62 · Zbl 1191.83013 · doi:10.1088/0264-9381/23/16/S09
[35] Harten A, Lax P D and Leer B v 1983 SIAM Rev.25 35-61 · Zbl 0565.65051 · doi:10.1137/1025002
[36] Liu X D, Osher S and Chan T 1994 J. Comput. Phys.115 200-12 · Zbl 0811.65076 · doi:10.1006/jcph.1994.1187
[37] Jiang G S and Shu C W 1996 J. Comput. Phys.126 202-28 · Zbl 0877.65065 · doi:10.1006/jcph.1996.0130
[38] Duez M D, Foucart F, Kidder L E, Pfeiffer H P, Scheel M A and Teukolsky S A 2008 Phys. Rev. D 78 104015 · doi:10.1103/PhysRevD.78.104015
[39] Farris B D, Gold R, Paschalidis V, Etienne Z B and Shapiro S L 2012 Phys. Rev. Lett.109 221102 · doi:10.1103/physrevlett.109.221102
[40] Liebling S L, Lehner L, Neilsen D and Palenzuela C 2010 Phys. Rev. D 81 124023 · doi:10.1103/PhysRevD.81.124023
[41] Penner A J 2011 Mon. Not. Roy. Astron. Soc.414 1467-82 · doi:10.1111/j.1365-2966.2011.18480.x
[42] Mösta P et al 2013 Class. Quantum Grav.31 015005 · Zbl 1287.83004 · doi:10.1088/0264-9381/31/1/015005
[43] Foucart F et al 2015 Phys. Rev. D 91 124021 · doi:10.1103/PhysRevD.91.124021
[44] Foucart F, O’Connor E, Roberts L, Kidder L E, Pfeiffer H P and Scheel M A 2016 Phys. Rev. D 94 123016 · doi:10.1103/PhysRevD.94.123016
[45] Minerbo G N 1978 J. Quant. Spectrosc. Radiat. Transfer20 541-5 · doi:10.1016/0022-4073(78)90024-9
[46] Audit E, Charrier P, Chièze J and Dubroca B 2002 arXiv:astro-ph/0206281
[47] Parrish I J, McCourt M, Quataert E and Sharma P 2012 Mon. Not. Roy. Astron. Soc.422 704-18 · doi:10.1111/j.1365-2966.2012.20650.x
[48] Radice D 2017 Astrophys. J.838 L2 · doi:10.3847/2041-8213/aa6483
[49] Duez M D et al 2020 in preparation
[50] Szilágyi B 2014 Int. J. Mod. Phys. D 23 1430014 · Zbl 1293.83002 · doi:10.1142/s0218271814300146
[51] Shibata M 2000 Prog. Theor. Phys.104 325-58 · doi:10.1143/ptp.104.325
[52] Duez M D, Liu Y T, Shapiro S L and Stephens B C 2004 Phys. Rev. D 69 104030 · doi:10.1103/physrevd.69.104030
[53] Noble S C, Krolik J H and Hawley J F 2009 Astrophys. J.692 411-21 · doi:10.1088/0004-637x/692/1/411
[54] Noble S C, Gammie C F, McKinney J C and Del Zanna L 2006 Astrophys. J.641 626-37 · doi:10.1086/500349
[55] Siegel D M, Mösta P, Desai D and Wu S 2018 Astrophys. J.859 71 · doi:10.3847/1538-4357/aabcc5
[56] Kastaun W, Kalinani J V and Ciolfi R 2020 arXiv:2005.01821
[57] Foucart F et al 2013 Phys. Rev. D 87 084006 · doi:10.1103/PhysRevD.87.084006
[58] Muhlberger C D, Nouri F H, Duez M D, Foucart F, Kidder L E, Ott C D, Scheel M A, Szilágyi B and Teukolsky S A 2014 Phys. Rev. D 90 104014 · doi:10.1103/PhysRevD.90.104014
[59] Kastaun W and Galeazzi F 2015 Phys. Rev. D 91 064027 · doi:10.1103/PhysRevD.91.064027
[60] Endrizzi A, Ciolfi R, Giacomazzo B, Kastaun W and Kawamura T 2016 Class. Quantum Grav.33 164001 · doi:10.1088/0264-9381/33/16/164001
[61] Kastaun W, Ciolfi R and Giacomazzo B 2016 Phys. Rev. D 94 044060 · doi:10.1103/physrevd.94.044060
[62] Ciolfi R, Kastaun W, Giacomazzo B, Endrizzi A, Siegel D M and Perna R 2017 Phys. Rev. D 95 063016 · doi:10.1103/physrevd.95.063016
[63] Hanauske M, Takami K, Bovard L, Rezzolla L, Font J A, Galeazzi F and Stöcker H 2017 Phys. Rev. D 96 043004 · doi:10.1103/physrevd.96.043004
[64] Endrizzi A, Logoteta D, Giacomazzo B, Bombaci I, Kastaun W and Ciolfi R 2018 Phys. Rev. D 98 043015 · doi:10.1103/physrevd.98.043015
[65] Kiuchi K, Kyutoku K, Sekiguchi Y and Shibata M 2018 Phys. Rev. D 97 124039 · doi:10.1103/PhysRevD.97.124039
[66] Ciolfi R, Kastaun W, Kalinani J V and Giacomazzo B 2019 Phys. Rev. D 100 023005 · doi:10.1103/physrevd.100.023005
[67] Cook G B, Shapiro S L and Teukolsky S A 1992 Astrophys. J.398 203-23 · doi:10.1086/171849
[68] McKinney J C and Gammie C F 2004 Astrophys. J.611 977 · doi:10.1086/422244
[69] Fishbone L G and Moncrief V 1976 Astrophys. J.207 962-76 · doi:10.1086/154565
[70] Kreiss H and Oliger J 1973 Methods for the Approximate Solution of Time Dependent Problems(Global Atmospheric Research Programme (GARP): GARP Publication Series vol 10) (Geneva: International Council of Scientific Unions, World Meteorological Organization)
[71] Sadowski A, Narayan R, Tchekhovskoy A, Abarca D, Zhu Y and McKinney J C 2015 Mon. Not. Roy. Astron. Soc.447 49-71 · doi:10.1093/mnras/stu2387
[72] van Leer B 1977 J. Comput. Phys.23 276 · Zbl 0339.76056 · doi:10.1016/0021–9991(77)90095-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.